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Synthetic vascular image selection for deep learning based cerebral
bifurcation classification*

Florent Autrusseau’2, Rafic Nader'3, Mohammed EI Hassouni*, Anass Nouri®®,
Nesrin Mansouri!, Vincent L’ Allinec® and Romain Bourcier

Abstract—Deep learning algorithms rely heavily on large
datasets to efficiently perform various pattern recognition tasks.
However, collecting ground truth datasets, which include the
necessary annotations for training neural networks, is often a
challenging and labor-intensive process. Sometimes, in order to
alleviate the labeling burden, while still providing high quality
augmented data, synthetic models are being used. A properly
designed synthetic model can prove very efficient for various
pattern recognition tasks, subject to a thorough mimicking of
the actual ground truth. However, when exploiting synthetic
images, one might encounter significant drawbacks: how can
we ensure that the synthetic data contributes positively to the
neural network training process ? Is the synthetic image of
sufficient quality to be useful ? Or should it be discarded from
the training dataset (as it may lessen the CNN learning ability) ?

In this work, we propose to run a subjective experiment to
assess the similarities between vascular bifurcations, we can
hence sort various bifurcations, may they be ground truth
portions of the vascular tree as acquired on Magnetic Resonance
Angiography (MRA) - Time of Flight (ToF) acquisitions, or syn-
thetically modeled bifurcations. Once the subjective experiment
was set up and conducted, we tested various objective quality
measures to assess the fidelity of the synthetic images. More
precisely, these automatic quality estimation metrics were used
to remove any malfunctioning synthetic model from the training
dataset. A CNN is finally trained on a bifurcation classification
task with either the full training set or its reduced version (after
quality filtering).

I. INTRODUCTION
A. Motivation and context

This work is a follow-up of our previous study [1],
focusing on cerebral vascular bifurcation classification. The
Circle of Willis (CoW) is an arterial ring-like structure
located at the base of the brain. It is composed of a set
of cerebral arteries, splitting into numerous bifurcations.
These cerebral bifurcations are of particular interest to neuro-
radiologists, as this is where most intracranial aneurysms
(ICA) occur. An aneurysm is an outpouching of the arterial
wall, a swelling, or bulge of the artery. Specifically, about
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85% of all intracranial aneurysms occur on the circle of
Willis, and more particularly onto 15 bifurcations (shown
with yellow discs in Figure 1). The percentages within the
gray discs represent the chance of an aneurysm to occur
on the given bifurcation. Thus, knowing that most of the
ICAs occur on these particular locations, it is crucial to be
able to automatically detect (and classify) these bifurcations.
Several works have been devoted to the classification of CoW
arteries [2], [3], such a classification is not an easy task, as
there is a well known significant variability in the shape of
the CoW [4], [5]. Indeed, some arteries may be completely
missing for some patients. Although the classification of
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Fig. 1. Schematic representation of the CoW.

CoW arteries has widely been studied, very few works have
focused on the CoW bifurcation classification [6]. We have
presented in [1] a method aiming to detect and classify
13 bifurcations composing the Circle of Willis. Basically,
a U-Net architecture [7], [8] allows to segment the cere-
bral vascular tree, then 3D patches were extracted around
each bifurcation (detected via skeletonization, and 3D graph
representation), ultimately, the bifurcation classification was
performed through a 3D CNN.

In a later study [9], in the aim to cope with reduced
training datasets, we have proposed a fully synthetic vas-
culature model (VaMos) [10], which goal is to mimic as
best as possible the various geometric features of the arterial
bifurcations, as well as the surrounding background. Initially,
VaMos started as a humanization of mice vascular trees for
cerebral arteries segmentation [11], then, it later evolved



into a fully synthetic vascular tree model aiming for pattern
recognition tasks (bifurcation classification or intracranial
aneurysm detection and segmentation). Indeed, this synthetic
model proved very useful for both ICA detection and bifur-
cation classification [9]. However, despite the quite efficient
modeling offered by VaMos, it may happen that some
generated synthetic images fail to faithfully represent their
ground truth. For various reasons (poor segmentation, strong
noise amplitude, unsuitable arterial thickness modification,
etc.) some arteries could be missing, thus leading to reduced
learning performances from the bifurcation classification
neural network.

This paper is devoted to the identification of any malfunc-
tioning synthetic models. Let us now present in details the
scope of this work, and the various steps that are needed to
efficiently filter out any failed synthetic 3D patch.

B. Scope of the current work

As previously explained, our main objective in this work,
is to be able to identify any synthetic models that actually
failed, and hence, may not be suitable to efficiently train a
given Convolutional Neural Network on a pattern recognition
task. Ideally, the best way to determine which synthetic
patch generation went wrong would be to ask a group of
human observers (preferably experts in the field) to assess
the quality or similarity between image pairs. Such a process
is commonly exploited in the image quality assessment
research topics. Indeed, such approaches are used to estimate
the perceived quality of compressed images for instance [12].

However, such subjective experiments are rarely employed
(if ever) on medical images, as their inherent features (noisy
data, low contrast, multi-dimensionality) make it quite diffi-
cult to assess the quality. Moreover, due to the complexity
of medical images, naive observers can hardly be enrolled
during subjective tests, expert observers (doctors of medicine
or even radiologists) should be recruited for such a task.

We have nevertheless designed a subjective similarity
measure protocol, which aim is to sort various 3D bifurca-
tions with decreasing similarities to a given ground truth.
Obviously, such a test cannot be conducted on a whole
training dataset, typically made up of thousands of images.
Traditionally, subjective tests, involving human observers,
are commonly used to design Objective Quality Metrics
(OQMs), i.e. computer programs, aiming to predict the
subjective score provided by humans assessors. In the context
of classical (natural) image quality assessment, numerous
OQMs have been designed [13], alternatively, one can also
find various methods that are particularly applicable to 3D
point clouds or 3D meshes [14], [15]; however, very few are
devoted to medical images [16], [17], [18].

In this work, we are not actually looking for an efficient
objective quality metric (i.e., having the ability to accurately
predict a quality score), but we are more precisely interested
in finding a metric that would allow us to discard the worst
matches. Indeed, when removing the worst synthetic patches
from the training dataset, we might be able to improve the

CNN performance. Here, we consider bifurcation classifica-
tion as the final application (as already studied in [1], [9]), but
a similar reasoning could be applied to aneurysm detection,
CoW classification, or even thrombosis diagnosis, etc.
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Fig. 2. An example of the diversity we can find in bifurcation geometry.

Figure 2 gives a few examples of cerebral bifurcations
(label #E in Fig. 1) from various patients, along with their
synthetic models. We can observe a significant variability in
their shapes (number of branches, diameters, angles, tortuos-
ity, efc.); and hence strong geometric distortions which might
be disadvantageous when testing quality metrics, as we will
see later on in this work (sec. III).

II. SUBJECTIVE AND OBJECTIVE QUALITY ASSESSMENT

In the following, we first introduce a new subjective
protocol (in section II-A), for which we have enrolled several
human observers, then, we experiment various objective
quality metrics, of different kinds (sec. II-B). Next, (within
sec. III) we will investigate whether the accuracy of the
bifurcation classification may be increased by filtering out
unreliable images thanks to any of the tested objective quality
metrics.

A. Subjective Experiment

Classical subjective quality assessment protocol cannot be
straightforwardly applied to medical images. As previously
mentioned, such images being noisy, low contrast, and in
three dimensions, it is quite difficult for an observer to
efficiently judge any resemblance between a pair of images.
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Fig. 3.

We have thus opted for a simplified protocol in which the
observers would be asked to rank images by decreasing
similarity. The protocol operates as follows: a reference
3D bifurcation is displayed on the top of the screen, and
below, aligned onto a second row, a series of 5 candidate
bifurcations are shown (Figure 3 shows a typical example
of such a display). The subjective experiment runs in a
web browser', the angiographic images (MRA-ToF) were
converted to 3D meshes for a simplified display and manip-
ulation. Underneath each candidate bifurcation, a select box
allows the observer to rank the images, from the most similar
to the most different image. In order to avoid any repeating
patterns possibly induced by the observers’ fatigue, all the
displays are randomized, i.e. within each display screen the
positions of the five candidate images are scrambled, and
in the course of the experiment, the consecutive displays
are also shown in a random order. Hence, the observers do
not see the same images at the same time or at the same
location. Overall, 480 candidate bifurcations were tested
(and compared to 96 reference bifurcations of interest).
Specifically, the bifurcations were extracted from the MRA-
ToF acquisition within 2 ¢m wide cubes (50 wvoxels). In
order to avoid ending up with a test being too tedious and
too long, we had to split the experiment into 4 different
sessions. This way, for each test session, the observers had
to evaluate 24 consecutive displays (showing a reference
bifurcation along with its 5 candidates, as seen on Fig. 3),
which took about 20 to 30 minutes per observer and per
test session. Among the 480 candidate bifurcations, 240
were gathered from different patient’s MRA acquisitions
(different from the reference), and 240 were generated by
our synthetic vascular model. Overall, 31 human observers

IThe subjective test was developed in Python, using Streamlit along with
the PyVista / stpyvista libraries (https://streamlit.io/,
https://docs.pyvista.org/,
https://github.com/edsaac/stpyvista )
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Layout of the subjective protocol.

have been enrolled (students and staff from the Universities
of Nantes, France and Kenitra, Morocco), before running the
test, they were briefed about the purpose of our study, and
the protocol was explained. Among the 31 human observers,
10 are considered experts in the field as they are involved in
project dealing with cerebral arteries (aneurysms, vascular
segmentation, biology of the arterial cells, etc.) and hence
are all well aware of the CoW geometrical configuration.
No significant differences were found between the subjective
scores issued by naive and experts subjects. The observers
were able to zoom (in/out), shift, and rotate the bifurcation
within each 3D panel, they were thus able to align (when
possible) the 6 displayed bifurcations, before sorting them
by decreasing order of similarity. They were instructed to
judge the overall shape of the bifurcations (i.e. number of
branches, as well as their lengths and orientations).

The entire subjective dataset was thus split into four
smaller sets, the scores from 13 observers were collected for
set #1, subjective scores from 14 observers composed set #2,
15 for set #3 and finally, set #4 was gathered from 14 differ-
ent observers. Some of the observers ran several test sessions.
Inevitably, when running such a subjective experiment, and
especially here, on 3D volumes, some observers may exhibit
some inconsistencies with the others. We have thus computed
dendrograms separating the observers’ scores (see Figure 4)
in order to discard incoherent observers from the analysis.
Similarly, the subjective dataset (480 candidate bifurcations
collected from 96 references) had to be manually composed
without any a priori knowledge on the actual subjective
match with the reference. We thus had to rule out all displays
(composed of the 6 test bifurcations) presenting incoherent
subjective scorings. Whenever the average standard deviation
across all observers and all five images of a given display
was above 1.0, the said display (reference bifurcation along
with its 5 test candidates) was removed from the subjective
dataset. Ultimately, our subjective dataset was composed as
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Fig. 4. Observer selection process, using clustering

follows: 8, 10, 14 and 12 observers for each test set (when
significant distances were witnessed among observers, the
ones being located at the extremities of the dendrogram
tree were discarded), and 320 test images (composed of 157
patients, and 163 models). Generally speaking, the aim of a
subjective experiment is to determine which objective quality
metric would best predict observers’ assessment of quality
or, in our case, bifurcation rankings.

B. Objective quality metrics

Obviously, we cannot rely on a subjective experiment in
a normal use-case scenario. It is thus crucial to come up
with an Objective Quality Metric (OQM), i.e. a software,
being able to estimate the subjective score as provided by
the human observers. Such metrics can be very diverse in
their design as well as in their purpose.

OQMs mostly fall into one of these five categories:

o Statistical metrics,

o Perceptual quality metrics,

¢ Correlation based metrics,

¢ 3D-meshes metrics,

o Neural network-based quality evaluation.

As their name implies, statistical metrics would basically
compare some statistical features between two given images.
Correlation-based metrics (such as the ones being used in
3D registration methods), might be useful in our working
scenario due to the inherent geometric distortions. 3D-mesh
based quality metrics might also be of interest, and finally,
quality metrics based on neural networks can also be of a
great help to estimate the subjective scores (especially when
geometric distortions are to be considered).

For still 2D natural images and videos, perceptual quality
metrics are legion, advanced human visual system features
are modeled in order to come up with an accurate estimation
of the perceived quality. Things are much more complicated
for 3D, noisy, medical images. Indeed, very few OQMs are
efficient against geometric distortions, i.e. if there is any
rotation, shift, or any kind of geometric transform between
the reference and test image (especially when it comes to
assess 3D volumes/meshes). Therefore, unfortunately, very
few quality metrics have been specifically designed for (and
are particularly efficient on) medical images. Even from a
subjective quality evaluation perspective, our working sce-
nario is very complex, as it basically piles up many problems
that may hamper the performances of an objective quality
evaluation. Indeed, our dataset is composed of noisy 3D
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via dendrograms, with euclidean distance computation.

medical images, including actual ToF acquisitions, and syn-
thetic models, and, above all, the bifurcations are collected
from different patients. Knowing the significant variability
in the shape of the Circle of Willis, very strong geometric
distortions are to be expected between the test bifurcations.

In this work, we have tried 12 different quality metrics,
three were statistical metrics (PSNR, SSIM [19] and Mat-
tes mutual information [20]), two were correlation metrics
(ANTS Correlation [21], and Normalized Cross Correlation -
NCC [22]), 5 were mesh-based quality metrics (PCQM [23],
RR_NSS-L1 [24], RR_NSS-L2 [24], FR_Kdtree [25] and
FMPD [26]), we have also computed the Hausdorff distance
(mesh-based) between both inputs [27] and finally, we have
also tested the no-reference Multi-Modal Point Cloud Quality
Assessment (MM_PCQA) metric [28]. This metric, pre-
trained on the Waterloo Point Cloud dataset [29], leverages
point-based network encodings of 3D patches and image-
based neural network encodings of 2D projections.

The five first cited OQMs operate on grayscale images
and are full-reference, i.e. need the whole reference and
distorted image as inputs. The remaining seven are based
on 3D meshes evaluation. RR_NSS is a reduced-reference
method that assesses the quality of 3D meshes by comparing
natural statistics extracted from features of both reference
and distorted meshes [24]. RR_NSS-L1 and RR_NSS-L2 are
variants of this method, using L1 and L2 norms, respec-
tively, to measure the similarity between these statistical
representations. The FR-Kdtree method accurately measures
how much a test mesh has been distorted, comparing to its
reference. This is performed by searching for the closest
points between the two meshes, using a technique called the
k-d tree [25]. FMPD (Fast Mesh Perceptual Distance), is a
full reference metric that considers the mesh local roughness
measure derived from Gaussian curvature while assessing the
similarity between a reference and a distorted 3D mesh [26].

Commonly, when running a joint Objective-Subjective
experiment, a good way to express the prediction accuracy,
is simply to plot the subjective Mean Opinion Score (MOS)
versus the predicted MOS (MOSp) provided by the metrics
(see Fig. 6). Ideally, one would expect to have a somewhat
linear distribution on the MOS vs. MOSp plot. Pearson
Correlation Coefficient (PCC), Spearman Rank Correlation
Coefficient (SRCC), or Root Mean Square Error (RMSE)
are the most widely used performances metrics to assess
the OQMs. The subjective experiment we propose here is
not quite related to quality, but rather, we aim to rank the



test bifurcations by similarities, hence the above performance
metrics might not present a high aptitude in this task. The
ultimate performance test would be to assess the pattern
recognition task (bifurcation recognition) when potentially
failed bifurcations models or unusual patient geometry are
encountered, and discarded (see sec. III-B).

III. EXPERIMENTAL RESULTS
A. Objective vs Subjective scores

When running a subjective experiment, as a first analysis
step, it is crucial to ensure that the subjective scores are cor-
rectly distributed and span the whole quality range. Indeed,
a poorly distributed dataset might induce important issues
when looking for an efficient objective quality metric that
would faithfully estimate the perceived quality. Moreover, as
already explained, the composition of our dataset is a bit
peculiar, it includes both some actual bifurcations acquired
on MRA-ToF images, and also some synthetically modeled
images. Hence, it is important to make sure that the two
types of images are also well distributed within the subjective
quality range.
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Fig. 5. Repartition of the true bifurcations vs. synthetically modeled ones.

We show on Figure 5 for each quality step, how the actual
ToF and modeled bifurcations are distributed. It appears that
the synthetic images are globally quite well assessed by the
human observers, although their ranking seems to be slightly
lower than the actual ToF bifurcations. Now that we have
ensured that the subjective scores are well distributed, let
us evaluate the ability of some common quality metrics and
correlation-based measures to predict the subjective scores.
As previously explained, we have thus computed the SRCC,
the PCC, and RMSE between the subjective MOS, and the
predicted scores. Table I shows the performances of each
tested OQM on the subjective dataset. Correlation are given
in absolute values, as no matter if the correlation is positive
(similarity or quality measure) or negative (dissimilarity
evaluation). As can be observed on this Table, it seems that
not a single OQM is able to very accurately predict the
subjective scores. In fact, Figure 6 appears to confirm this
statement, as we can observe that the MOS vs. MOSp plots
are quite erratic, the distribution is very wide, and quite far
away from being linear. We only show SSIM and Mattes MI
here, but all other OQMs exhibit a similar behavior. However,
as we will witness in the next subsection (section III-B),
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Fig. 6. Two examples of MOS vs. MOSp plots (Mattes Mutual Information
and SSIM).

such a weak ability to predict the subjective scores might not
hinder the quality-based filtering. Again, what is of utmost
importance in this work, is the metrics ability to discard the
worst quality models.

B. CNN Performances increase

In this work, we shall not present in detail the bifurcation
classification method. This latter has been discussed at length
in our previous work [1]. Here, we have been using the
exact same neural network, but this work being more of a
feasibility study, we have restricted the set of bifurcations to
be classified. Here, we aim to recognize only bifurcations #A,
#B, #E, #F, #K, #L and #M (see yellow labels in Fig. 1). As
previously explained in [1], bifurcations #C and #D are rarely
present in the acquired MRA-ToF, and lead to an improper
learning (this statement also stands for bifurcations #N and
#0); this is commonly due to the MRI technician cropping
the MRA-TOF to the very center of the Circle of Willis when
an aneurysm is know to be located there, and thus leaving out
the peripheral portions. Moreover, contrary to what we might
expect from Figure 1, bifurcations #I and #] are actually
very close to #E and #F, and hence, when detecting the
latter, we actually have very good chances to also detect the
former. We have also decided to leave bifurcations #G and
#H out of this analysis, as these two were the ones leading to
most classification errors in our previous analysis. These two
bifurcations are actually the source of some disagreement
even among neuro-radiologists.

The training set was gathered from 14 ToF acquisitions,
hence if all 7 bifurcations were actually present within each
ToF volume, we would have ended up having 14 x 7 = 98
original bifurcations, but due to missing arteries, our training
dataset is composed of 84 original bifurcations only. For
each reference bifurcation, the VaMos model was launched
with varying parameters, spline coefficient (tortuosity ad-
justments) were set as 3, 6, 9 and 12. For each parameter,
the model was executed three times (in order to generate
a wide variety of models, i.e. varying diameters, angles,
background noise, ...). Ultimately, the training dataset was
thus composed of 84 original bifurcations and 980 synthetic
models.

In this study, we have tested 12 different OQMs on our
subjective dataset (falling in all 5 categories mentioned in
sec. II-B). In order to ensure a fair comparison between
all quality metrics, we have removed the 100 bifurcations
presenting the lowest predicted quality. The training and test



|| MM.PCQA | PCQM | FMPD | PSNR | RRNSS-LI | SSIM | Hausdorff | ANTSCor | NCC | RR.NSS-L2 | MattesMI | Kdtree

SRCC 0.0453 0.0736 | 0.1219 | 0.1544 0.2260 0.2730 | 0.3254 0.3864 0.3878 0.4102 0.4281 0.4895

PCC 0.0148 0.0054 | 0.1342 | 0.2055 0.2553 0.2513 0.3406 0.4400 0.4454 0.4094 0.4609 | 0.5022

RMSE 2.8753 3.2211 | 3.1130 | 56.0894 4.4587 2.3289 | 15.6470 3.5308 2.9897 2.8795 3.2901 2.8792
TABLE I

PERFORMANCES METRICS (SRCC, PCC, AND RMSE) FOR EACH TESTED OQM. CORRELATION ARE GIVEN IN ABSOLUTE VALUES, OQMS ARE
SORTED BY INCREASING SRCC

Training set Test set

(ToF)  (Synthetic) (ToF)

#A 13 156 15
#B 11 132 14
#E 14 154 15
#F 14 154 15
#K 10 120 13
#L 9 108 15
#M 13 156 14
Sum 84 980 101

TABLE II

COMPOSITION OF BOTH THE TRAINING AND TEST DATASETS (NUMBER
OF CROPPED PORTIONS OF THE MRA-TOF REPRESENTING EACH
LABEL).

datasets are composed as detailed in Table II. We have man-
aged to have each and every considered bifurcation label uni-
formly distributed. The training step was performed through
5 folds. Figure 7 presents the classification performances
(Accuracy, Precision, F1-Score) reached thanks to each and
every tested quality metric. In this figure, we have sorted
the quality metrics by increasing CNN accuracy. Besides
all tested OQMs, the plot also features the performances
achieved when using the entire (unfiltered) dataset (‘“Full-
Set”) highlighted within the hatched area. Hence, all OQMs
positioned to the left of this hatched area actually result in
a loss of performances (in terms of accuracy only here),
whereas all metrics positioned to the right, lead to improved
performances. If the ranking was applied on the other met-
rics (increasing F1-Scores or Precision), the order of the
OQMs would remain fairly similar. For an easy comparison
of any improvement or deterioration, the horizontal dotted
lines (along with the filled area) project this “Full Dataset”
baseline throughout the x-axis. Wherever a bar is above its
corresponding dotted line (i.e. of a corresponding color), this
means we were able to improve this particular performance.
Obviously, when a given bar is below the dotted line (of
similar color), the performance was decreased. As can be ob-
served on this plot, the correlation-based metrics (ANTSCor
and NCC) offer the best performance increase (with respect
to all three performances metrics), whereas SSIM, PSNR
and PCQM actually lessen the overall performances. This
does not quite come as a surprise, as the correlation metrics
are relatively resilient to geometric distortions (to a certain
extent), while also comparing the geometric shape (which
the statistical metrics cannot achieve).

When training on the full dataset across all objective qual-
ity metrics (OQMs), the model maintains consistently high

0,9
I Accuracy
I F1-Score
0,875 [ Precision

0,85

0,825 -

081

0775 =

0,75

<
<o
&)
~

Hausdorff

RR_NSS-L1
MattesMI
RR_NSS-L2

MM

Objective Quality Metrics

Fig. 7. Performances of the bifurcation classification CNN (Accuracy, F1-
Score and Precision).

precision, but the Fl-score exhibits significant variability.
This indicates low sensitivity (recall), as the model correctly
avoids false positives but fails to identify all true positives.
The model, only predicts a class when it is highly confident.
This can be attributed to ambiguity in the bifurcations or poor
representation caused by certain alterations in the synthetic
model. These issues likely make some instances harder for
the model to classify correctly.

By using correlation-based metrics such as ANTSCor
or NCC, the images selected for training likely offer a
clearer representation of their respective classes, minimizing
ambiguity and noise. This enables the model to better learn
the discriminating features of the bifurcation, resulting in
a noticeable improvement in the Fl-score. The consistently
high precision proves the model continues to effectively
avoid false positives.

IV. DISCUSSION AND CONCLUSION

This work is dedicated to a joint subjective and objec-
tive quality evaluation of 3D cerebral vascular arteries and
bifurcations. In fact, behind this quality assessment frame-
work, we aim to optimize the learning step of a bifurcation
classification method. A Convolutional Neural Network is
being used to classify the cerebral bifurcations along the
Circle of Willis, we feed this CNN for its training step with
both actual (patient) acquisitions from magnetic resonance
angiography images and with synthetically modeled patches.
Indeed, we have designed a fully synthetic model (VaMos)
able to replicate Time of Flight images and subsequently gen-
erate massively annotated datasets. However, although such



modeled patches are globally functioning rather well, as they
can significantly improve the classification performances,
we want to automatically remove any bad representations
of the synthetic model at the CNN input. In other words,
we aim to clean up the training dataset for an optimized
learning. We have thus designed a subjective protocol where
human observers are asked to rank a set of candidate 3D
bifurcations with respect to a given reference. Once such
a subjective dataset gathered, we have identified a set of
Objective Quality Metrics (computer programs, aiming to
predict a subjective score) that might best estimate the Mean
Opinion Scores provided by the observers. Identifying a good
performance quality metric might help us to filter out any
malfunctioning synthetic model. Unfortunately, our dataset
is composed of very difficult images to deal with; Indeed the
input images are 3D, noisy, of low contrast, bad quality and
most importantly with strong geometric distortions. Hence,
very few OQMs have ever been designed considering all
these constraints. However, although the subjective quality
appeared to be very challenging, we could nevertheless
identify a few metrics that were able to efficiently discard
some of the most unreliable synthetic models. We could
witness such an efficient filtering by scrutinizing the per-
formances improvement reached by the classification CNN
on OQM-based cleaned up input datasets. Although the
observed improvements were quite modest (Accuracy going
from 0.796 for the Full-set baseline to 0.854 when filtering
images with NCC, Precision going from 0.838 to 0.868 or
F1-Score leaping from 0.780 to 0.850), still, it is encouraging
to witness possible improvements via the use of OQMs.
A properly designed quality metric (specifically intended to
deal with the various constraints at hand) might lead to more
significant performance improvement. Such a work will be
the subject of a forthcoming study.
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