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Cerebral Artery Classification: Integrating Synthetic Models with MRA
Data

Nesrin Mansouri1, Vincent L’Allinec1,2, Romain Bourcier1,3 and Florent Autrusseau1,4

Abstract— The Circle of Willis (CoW) plays a critical role in
cerebral vascular circulation, yet its high anatomical variability
complicates accurate segmentation and artery classification,
particularly in clinical settings. While Magnetic Resonance
Angiography (MRA) images are commonly used for segmenta-
tion, the scarcity of comprehensive, annotated datasets limits
the performance of machine learning models. In this study,
we leverage synthetic models generated by VaMos, a vascular
modeling tool, to augment the existing TopCoW dataset. By
incorporating these anatomically plausible synthetic structures
alongside actual MRA data, we improve artery classification
using a deep learning model, specifically nnUNet, which is
optimized for medical image segmentation. For smaller/thinner
and underrepresented arteries, such as the posterior and
anterior communicating arteries, the improvement was around
16%. This approach provides a novel solution to data scarcity,
showing that synthetic models can effectively complement real
data to improve segmentation performance in challenging
anatomical regions.

I. INTRODUCTION

The Circle of Willis (CoW) is a ring of arteries located
at the base of the brain, primarily responsible for ensuring
continuous blood flow to the brain by providing collateral
circulation between the brain’s anterior and posterior regions
[1], [2]. Its main role is to compensate for any blockages
or disruptions in blood flow to maintain adequate oxygen
supply. Studies have shown that approximately 50-60% of
people have anatomical variations or an incomplete CoW,
which can reduce its effectiveness in fulfilling this com-
pensatory function [3], [4]. Recent studies [5], [6] provide
examples of the different variants of the CoW, illustrating
the diverse forms these structures can take and their potential
impact on cerebral circulation. These variations can increase
the risk of ischemic events, particularly in cases of arterial
blockage or stenosis [7], [8], [9]. Moreover, the diameter
of collateral vessels plays a critical role in its capacity to
maintain the blood flow. While arteries with diameters under
1 mm were previously considered hypoplastic [10] recent
studies suggest that the functional threshold for effective
cross-flow through the anterior and posterior communicating
arteries is between 0.4 and 0.6 mm, highlighting that even
smaller arteries can contribute to collateral circulation under
certain circumstances [11], [12].
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Accurately classifying the arteries of the CoW is crucial
not only for understanding its complex angio-architecture
but also for identifying pathological conditions like in-
tracranial aneurysms (IAs). IAs often form in regions of
vascular weakness or abnormality and can lead to life-
threatening complications such as hemorrhagic strokes [13].
By classifying CoW arteries, we gain key insights into the
mechanisms behind IA development and the diverse shapes
these aneurysms can take [14], [15]. Variations in aneurysm
shape are influenced by hemodynamic stress and structural
anomalies, particularly onto bifurcations, where the risk of
IA formation is higher. Moreover, aneurysm characteristics
like shape irregularities (e.g., blebs) and changes in size are
critical rupture risk factors. Understanding these features is
essential for predicting rupture risk and guiding targeted ther-
apeutic interventions. Given the critical role of anatomical
and hemodynamic factors in IAs formation, accurate artery
classification in the CoW is essential for identifying high-risk
areas, particularly onto the bifurcations.

However, despite its clinical relevance, characterizing the
CoW is challenging due to both clinical and technical factors.
Clinically, its complex and highly variable anatomy demands
expert interpretation for accurate assessment. Technically,
the variability in imaging data—stemming from different
modalities, resolutions, and patient-specific factors—further
complicates the development of reliable and consistent anal-
ysis methods. These challenges underscore the growing need
for efficient tools that can accurately analyze and compare
the angio-architecture of the cerebral vascular tree, ultimately
improving the efficiency and precision of CoW assessments.

The CoW is primarily imaged using either Magnetic Reso-
nance Angiography or Computed Tomography Angiography
(CTA). However, publicly available datasets for CoW imag-
ing are limited, with MRA datasets often lacking sufficient
annotations and CTA datasets being even rarer. To overcome
these limitations, the TopCoW challenge1 released a joint-
modal dataset (CTA and MRA) with accurate annotations,
challenging the community to improve CoW characterization
and segmentation in medical imaging [16].

To enhance dataset availability and overcome limitations
of annotated data, we incorporated synthetic models of CoW
arteries generated by the Vascular Models (VaMos)2 tool
[17], which simulates geometric features of arterial bifur-
cations and surrounding structures. These synthetic models
allowed us to augment the dataset, improving the general-

1https://topcow24.grand-challenge.org/
2https://gitlab.univ-nantes.fr/autrusseau-f/vamos



ization of machine learning models for artery classification.
However, since VaMos is currently designed to mimic MRA
Time-of-Flight (ToF) acquisitions, only MRA data was con-
sidered in this study.

Synthetic data generation has proven effective in im-
proving segmentation performance, as demonstrated in [18],
though prior methods mainly focused on variations of ex-
isting data. VaMos offers a novel approach by generating
anatomically accurate vascular models, incorporating key
features like diameter, tortuosity, and bifurcation geometry,
closely mirroring real-world conditions. In an approach
similar to the work carried out in [19] on brain tumor
segmentation, we have extended the use of synthetic data
to cerebral vascular trees, addressing the unique challenges
of CoW segmentation. Deep learning models like nnUNet
[20] have been widely applied in vascular segmentation tasks,
showing significant promise. By integrating synthetic models
with real MRA data via an nnUNet, our aim is to improve
segmentation accuracy and robustness.

In this study, a nnUNet was applied for multiclass seg-
mentation of the CoW using the TopCoW dataset and we
evaluated the impact of incorporating synthetic models from
VaMos. Our hybrid approach aims to improve artery classi-
fication performance by leveraging both real and synthetic
data to enhance segmentation accuracy.

II. MATERIAL & METHODS

A. Dataset Description and Annotation Protocol from the
TopCoW Challenge

In this study, we utilize the MRA images provided by the
TopCoW challenge dataset. The dataset consists of patients
admitted to the Stroke Center at the University Hospital
Zurich (USZ) between 2018 and 2019. Inclusion criteria
required that both MRA and CTA scans be available for
each patient, with at least one of the modalities allowing
for the assessment of the CoW anatomy. The patients in this
cohort were diagnosed with or recovering from stroke-related
neurological disorders, including ischemic stroke, transient
ischemic attack, retinal infarct, intracerebral hemorrhage, and
cerebral sinus vein thrombosis.

The MRA data were acquired using various Siemens
scanners, with magnetic field strengths of either 3 Tesla or
1.5 Tesla, following standard clinical protocols. Most data
were collected at USZ, with some cases from neighboring
Swiss hospitals. The data is multi-site, representing scans
from different locations in Switzerland. To ensure patient
privacy, the data were anonymized, and additional defacing
and cropping procedures were applied to focus solely on
the braincase region. The MRA images were converted from
DICOM to NIfTI format, and defacing was performed using
the quickshear method to remove facial regions [21].

Virtual Reality (VR) was used to efficiently annotate and
verify the CoW anatomy in 3D, enabling the creation of
voxel-level multiclass segmentation masks for each MRA
image [22]. These masks labeled 13 arteries of the CoW,
including the Internal Carotid Arteries (ICA), Anterior Cere-
bral Arteries (ACA), Middle Cerebral Arteries (MCA), Ante-

rior communicating artery (Acom), Posterior communicating
arteries (Pcom), Posterior Cerebral Arteries (PCA), Basilar
Artery (BA), and, in some cases, a third A2 artery (3rd A2).
Figure 1a shows the fully annotated CoW, while Figure 1b
presents a zoomed-in view of the CoW, highlighting the
detailed segmentation of the 13 arteries. Note that only vessel
components and regions essential for diagnosing the CoW
angio-architecture and its variants were annotated.

(a) Annotated Circle of Willis (CoW).

(b) Zoomed-in view showing the 13 arteries.

Fig. 1: Visualization of the annotated data: (a) Full Circle of
Willis with labeled vessel components, and (b) zoomed-in
view highlighting the 13 key arteries [16].

B. Methodology: Three-Step Approach for Circle of Willis
Artery Segmentation

In this study, we introduce a three-step approach to ac-
curately segment and classify the arteries of the CoW in
MRA-ToF images. A schematic diagram of these steps is
presented in Figure 2, and the following sections provide a
detailed explanation of each step:

1) Step 1 - Vascular Tree Segmentation: In the first
step of our approach, we focus on segmenting the vascular
system through the training of a nnUNet model. The primary
objective of this step is to effectively isolate and delineate
the vascular structures, which will form the foundation
for subsequent analysis. This segmentation process aims to
remove irrelevant areas, ensuring that only essential vascular
regions are retained. In doing so, we isolate the vascular



tree, which will facilitate the identification of the region of
interest (ROI) at later stages of the pipeline. The specifics
of the training procedure, the methodology for data splitting,
and the model parameters are detailed in section II-D.

For this step, we utilized a dataset distinct from the
one provided by the TopCoW challenge. We employed 175
MRA images collected from over thirty French institutions.
Detailed information about this dataset can be found in [17].
The images were annotated by a trained operator (author
F.A.), and validated by a neuroradiologist with 10 years of
experience (author R.B.). The labels are 0 for background
and 1 for the vascular tree.

2) Step 2 - ROI Extraction: Following the vascular tree
segmentation, the second step involves extracting the ROI,
which encompasses all arteries composing the CoW. Initially,
small, disconnected components are removed. We then calcu-
late the center of mass (COM) for the remaining components.
Based on the COM and prior anatomical knowledge, a
bounding box is created with dimensions set to 40% of
the original size in the x-direction, 30% in the y-direction,
and 35% in the z-direction. This bounding box is used to
crop both the ToF images and their corresponding labels. In
the third step, which is crucial for achieving our objective,
we employ the VaMos framework to generate synthetic
data from the cropped ToF images, thereby augmenting the
dataset and increasing the diversity of training examples.
VaMos will primarily be applied to cases that include arteries
less represented in the database, helping to better capture and
enhance the representation of these arteries (which may be
missing in some individuals).

3) Step 3 - CoW Artery Classification: In the third step,
both the original MRA images and the newly generated
synthetic images are augmented and then fed into a nnUNet
model. The goal is to train the model to accurately segment
the 13 arteries composing the CoW. This process involves
data splitting, training, and testing, and the used model
parameters are consistent with those applied in the nnUNet
model from step 1. A detailed explanation of the data
splitting procedure, training and testing protocols, and model
configuration will be provided in section II-D.

C. Synthetic modeling using VaMos (Vascular Models)

In previous works [17], [23], we have introduced synthetic
vascular models using the VaMos Software to generate
realistic vascular structures for medical imaging applications.

In this study, to augment our dataset, we applied VaMos
to the 125 MRA images from the TopCoW challenge. For
each original MRA image, we generated multiple synthetic
models by varying two key parameters:

1) Artery Diameter: We applied a random modification
between -10% and +10% of the original artery diam-
eter to simulate natural variations.

2) Artery Tortuosity: We introduced random spline modi-
fications by adjusting the spline coefficients, effectively
altering the arterial tortuosity. This was achieved by
modifying the B-Splines’ coefficients, which define the
smoothness and curvature of the arteries’ centerlines.

nnUNet

Data-set of MRA -
TOFs

Segmented Vascular
Networks

Step 1: Vascular Tree Segmentation

Step 2: ROI Extraction
Remove Small

Disonnected ComponentsCalculate COM

Step 3: COW Artery Classification

nnUNet

Extract ROI

MRA

Labels

ROI MRA - TOFs Segmented COW Arteries

VAMOS - TOFs

Fig. 2: Schematic of the three-step approach for CoW
arteries classification: 1) vascular network segmentation (via
nnUNet), 2) Region of Interest extraction, 3) synthetic data
generation (VaMos) to enhance artery classification.

Other parameters are inherently randomized within Va-
Mos, such as the background noise shape and standard
deviation, or the vacular tree contrast and its radio-opacity.

These modifications enabled the creation of 495 synthetic
vascular images, thus greatly enhancing the diversity of our
dataset. Notably, VaMos was applied to cases containing
arteries less represented in the database, such as the two pos-
terior communicating arteries as well as the third A2 artery,
to increase their representation and ensure a comprehensive
coverage of the vascular structures.

D. Data Splitting and Model Setup

1) Data Splitting: In this study, we divided the dataset
into training and testing subsets, as illustrated in Fig. 3.
For training, both the original and synthetic MRA images
were used, while the testing subset, comprising 15% of the
total dataset, included 18 cases selected exclusively from the
original MRA images. This approach aimed to evaluate the
model performance on unseen real data, ensuring its ability
to generalize to new, real-world scenarios. The training data
underwent a 5-fold cross-validation with random assignment,
thus ensuring that each data point was used for both training
and validation across different iterations. Once trained, the
model was tested on the designated test data.

The 18 test cases were selected to represent the full data



Arteries Orig. data
(%)

Orig +
Synth. data

(%)
BA 100 100

R-PCA 100 100
L-PCA 100 100
R-ICA 100 100

R-MCA 98.4 94.35
L-ICA 100 100

L-MCA 100 100
R-Pcom 48.8 61.13
L-Pcom 44.8 54.68
Acom 84.8 82.9

R-ACA 100 100
L-ACA 100 100
3rd-A 12.8 32.26

TABLE I: Percentage of occurrence of each CoW artery
across the original TopCoW dataset and the augmented
dataset including synthetic data (bold figures represent the
most significant occurrence increase).

set, paying particular attention to the presence and absence of
various arteries. Overall, out of the 18 test cases, the R-Pcom
was missing in 8 ToF acquisitions, the L-Pcom was missing
in 10 ToF, the Acom was missing in 6 images and finally,
for 13 cases out of 18, the 3rd-A2 was missing. These vari-
ations in artery presence reflect a wide range of anatomical
differences, allowing for a comprehensive assessment of the
model’s performance across different artery configurations.

Fig. 3: Schematic of data splitting and 5-fold cross-
validation, with 602 training cases (original and synthetic)
and 18 test cases.

2) Model Setup:

Preprocessing
To ensure consistent voxel spacing across all images, we

retrieved the original voxel spacing and size, then set the
output spacing to be uniform in all three dimensions (0.4 ×
0.4 × 0.4 mm). Nearest neighbor interpolation was used for
label images to preserve the labels, while linear interpolation
was applied to regular images. This resampling process was
essential to maintain uniformity in the MRA images used to
train the nnUNet model.

Training Configuration
Loss Function: We utilized the default loss function in

nnUNet, which is weighted cross-entropy loss for the multi-
class segmentation task. Epochs and Validation: The model
was trained for 1,000 epochs with 5-fold cross-validation to

ensure robust evaluation.
Postprocessing
Connected Component Analysis: We employed the de-

fault post-processing provided by nnUNet, which includes
connected component analysis to filter out small connected
components. We did not set a specific threshold for the
largest connected component, as we relied on the default
settings.

Computational Resources
Hardware: Training was conducted on a local machine

equipped with an NVIDIA RTX A6000 GPU (49,140 MiB
total memory) and an Intel Xeon W-3433 CPU (16 cores, 2
threads per core, 4,200 MHz max clock speed).

Model Architecture
Convolutional Layers: The model utilized standard convo-

lutional layers. The background class (index 0) was included
during training, and the evaluation metrics (e.g., Dice score,
Recall and Precision) took the background into account.

III. RESULTS

The first result, presented in Table I, shows how the use
of synthetic images alongside the ground truth acquisitions
can notably harmonize the training dataset. Before applying
VaMos, the presence of the L-Pcom & R-Pcom and 3rd-A2
arteries in the dataset was 48.8%, 44.8%, and 12.8%, respec-
tively. After applying VaMos, these percentages increased
to 61.13% for L-Pcom, 54.68% for R-Pcom, and 32.26%
for 3rd-A2. We can hence observe the ability of VaMos to
multiply underrepresented arteries, particularly the 3rd-A2
artery, which showed the most significant increase. Addi-
tionally, VaMos increased the database size by generating
synthetic vascular structures, with the data being close to
real anatomical variations. We did not generate additional
synthetic arteries for less represented arteries like the 3rd-
A2, L-Pcom, and R-Pcom because only four cases in the
dataset contain all these arteries. Relying solely on these
four cases to expand the database would result in limited
variability and increase the risk of overfitting, as the model
would be trained on a narrow set of anatomical structures,
limiting its ability to generalize effectively to new and unseen
data. This extension of the dataset is crucial for improving
model learning, as it enables improved generalization with-
out introducing unrealistic data, thus contributing to better
segmentation performance, particularly for under-represented
arteries such as the 3rd-A2.

Fig. 4, shows a comparison between a Ground Truth
(GT) crop and various modeled images. The left panel
represents the original data (MRA ToF and its corresponding
Segmented label), while the right panel shows three different
synthetic images generated by VaMos. As can be observed,
the geometrical configuration of the vascular structures is
effectively modeled, closely mimicking the ToF images.
Subtle diameter and tortuosity modifications in the modeled
bifurcations are accurately captured, showcasing the model’s
ability to reproduce fine anatomical details with high fidelity.

During the TopCoW challenge, the 13 CoW arteries were
divided into two groups to better evaluate model perfor-



Fig. 4: Example of the original MRA image from the TopCoW Challenge (top row) and five VaMos-generated images
(bottom row), with modifications in artery angle, tortuosity, and diameter.

mance. Group 1 includes non-communicating arteries that
are almost always present, such as the basilar artery, posterior
cerebral arteries, internal carotid arteries, middle cerebral
arteries, and anterior cerebral arteries which are generally
larger and easier to segment. Group 2 consists of the more
variable, smaller, thinner communicating arteries, such as
the L-Pcom, R-Pcom, Acom, and 3rd-A2 arteries, which are
more challenging to segment. We will follow this division
to better assess the results, allowing for a clearer evaluation
of the model’s performance on different artery types and the
impact of synthetic data augmentation.

Table II presents a comparison of the overall performance
between the original dataset and the augmented dataset
(original + synthetic data), with metrics averaged across 13
classes, as well as for Group 1 and Group 2 arteries, during
the test phase. Key evaluation metrics—Dice, Precision, and
Recall—are reported for each artery class.

On the test set, when trained solely on the original dataset,
the overall average Dice score was 77.88, with Precision at
78.25 and Recall at 86.45 (Table II). However, performance
varied significantly among artery groups. For Group 1 arter-
ies, which include the larger and more prominent arteries, the
Dice score was 87.73, while for Group 2, which comprises
smaller and more complex arteries, the Dice score dropped
to 55.72. Notably, the challenging Group 2 arteries, such as
the R-Pcom, L-Pcom and the 3rd A2 arteries, exhibited lower
performance. This indicates that certain artery classes were
more difficult to segment with the original dataset alone,
likely due to their smaller size and anatomical complexity.

In contrast, when VaMos-generated synthetic data are
incorporated into the training set, there is a significant
improvement in segmentation performance across all artery
groups. The overall average Dice score increases to 83.72,
with Precision and Recall improving to 83.09 and 88.7,
respectively (Table II). Notable improvements are observed

in the previously challenging Group 2 arteries, where the
Dice score rises from 55.72 to 68.035. Similarly, Group 1
arteries also see a boost, with Dice scores increasing from
87.73 to 90.70. These results demonstrate that synthetic
data not only improved the performance for smaller and
more complex arteries but also enhanced the segmentation
accuracy for larger arteries, contributing to overall improved
robustness of the model.

The inclusion of synthetic data from VaMos has thus
proved to be highly beneficial, improving both the quality
and consistency of segmentation, particularly for underrepre-
sented or difficult-to-segment artery classes. By augmenting
the dataset with synthetic models that mimic the geometric
features of the CoW arteries, the model has gained more
comprehensive training data, which has led to better gener-
alization and higher accuracy in the segmentation task.

Metric Dice Recall Precision
All (Orig) 77.88 78.52 86.45

All (Orig + Synth) 83.72 83.09 88.7
Group1 (Orig) 87.73 87.15 89.20

Group1 (Orig + Synth) 90.70 89.25 92.55
Group2 (Orig) 55.72 59.1 80.26

Group2 (Orig + Synth) 68.035 69.23 80.04

TABLE II: Performance comparison for original data (Orig)
and augmented data (Orig + Synth) on the average of all
arteries, Group 1 and Group 2 arteries on the test data-set.

The overall performance improvements highlighted earlier,
especially the increase in Dice score from 77.88 to 83.72
when using synthetic data, are consistently reflected across
different artery classes. To further understand the impact of
these improvements, we break down the results by individual
arteries, demonstrating how both large and small arteries
benefited from the inclusion of synthetic data.

Breaking down the results per artery on the validation set,
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Fig. 5: Multiclass segmentation results on the validation set for all 13 CoW artery classes in terms of Dice, Recall, and
Precision. The red line shows the performance when trained solely on the original data, while the blue line incorporates
both original and synthetic data.

we observe that large arteries such as the R-ICA and L-ICA
already performed well on the original dataset, achieving
Dice scores of 89.63 for R-ICA and 90.09 for L-ICA (Fig. 5).
However, segmentation of smaller arteries like the L-Pcom,
R-Pcom and 3rd A2 arteries was more challenging, with Dice
scores of 62.44 for L-Pcom 65.19 for R-Pcom, and 43.96 for
3rd-A. With the addition of synthetic data, these challenging
arteries exhibited substantial improvement, with L-Pcom’s
Dice score rising to 84.54, R-Pcom 84.46 and 3rd-A to 88.46.
The larger arteries also maintained their high performance,
further validating the efficacy of synthetic data in enhancing
segmentation accuracy.

Similarly, the benefits of synthetic data were evident on
the test set. Larger arteries, such as the R-ICA and L-
ICA, saw Dice score improvements from 90.53 to 94.77
and 88.95 to 93.36, respectively. Smaller and more complex
arteries, like the R-Pcom, showed an increase from 61.44 to
73.68, the L-Pcom from 67.01 to 70.5, and the 3rd A2 from
34.81 to 68.67. This comprehensive improvement across
both validation and test sets underscores the effectiveness
of synthetic data in addressing variability in segmentation
performance, especially for smaller and anatomically more
complex arteries.

These findings confirm the model’s robustness and show
a significant performance improvement across most artery
classes, with synthetic data playing a key role in enhancing
segmentation accuracy on unseen data.

The example test case in Figure 6 shows the original

MRA image (left) and the corresponding model prediction
(right) using the hybrid approach combining synthetic and
original data for artery segmentation in the CoW. Both the
L-Pcom and R-Pcom arteries exhibited varying diameters and
were extremely thin, making accurate prediction challenging.
Despite these difficulties, our model was able to predict even
the tiniest arteries, capturing subtle differences between the
predicted and original images. As observed, while there is a
small discrepancy in the left Pcom, the model still managed
to effectively segment these challenging, thin arteries, high-
lighting its strength in dealing with intricate vascular details.

IV. DISCUSSION & CONCLUSION

In this study, we addressed the challenge of segmenting
underrepresented and anatomically complex arteries in the
Circle of Willis by integrating synthetic vascular models
with actual MRA data. The results clearly demonstrate the
effectiveness of incorporating synthetic data into the training
process, particularly for smaller arteries such as the posterior
communicating arteries and the rare third artery. Prior to aug-
mentation, these arteries exhibited suboptimal segmentation
performance due to their size and anatomical complexity.
After including synthetic data, segmentation accuracy for
these arteries improved significantly, with Dice scores rising
by over 34% for the 3rd-A, by approximately 12% for the
R-Pcom arteries and by 4% for the L-Pcom.

Moreover, the overall performance of the model saw a
substantial boost. The average Dice score increased from



Fig. 6: Example test case showing the original MRA image
(left) and the corresponding model prediction (right) using
a hybrid approach that combines synthetic and original data
for artery segmentation in the Circle of Willis.

77.88% to 83.72% on the test set, with Recall improving
from 78.52% to 83.09% and Precision rising from 86.45%
to 88.7%. These improvements were not only restricted to
difficult-to-segment arteries but were observed across both
larger and more complex arteries. This reinforces the contri-
bution of synthetic data in enhancing segmentation accuracy
and generalizing the model to better handle anatomical
variability across the full spectrum of arteries in the CoW.

Our approach builds upon earlier studies that have high-
lighted the importance of data augmentation in medical
image segmentation, particularly for structures with high
anatomical variability, such as the CoW While previous
efforts have focused on improving segmentation using real
MRA or CTA data, the scarcity of comprehensive, anno-
tated datasets has remained a limitation [16]. By intro-
ducing VaMos-generated synthetic vascular structures, we
provide a novel solution that not only expands the training
dataset but also enhances segmentation performance without
compromising anatomical fidelity. This addresses the gap
highlighted by studies that emphasize the need for more
representative and diverse training data in CoW segmentation
tasks [3], [4]. Future work may explore the use of additional
imaging modalities and advanced techniques like adversarial
training to tackle more extreme anatomical variations. These
advancements could further refine segmentation performance
and broaden the applicability of synthetic data augmentation
approaches in medical imaging.

Lastly, although our study focused on the CoW the syn-
thetic modeling approach developed here could be gener-
alized to other vascular networks or anatomical structures.
Future work could investigate the applicability of VaMos to
other medical imaging challenges, expanding the scope of
synthetic data augmentation in healthcare.
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