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Abstract. In this work, we present new synthetic vascular models that
tries to mimic various portions of the cerebral vascular tree, as acquired
from Magnetic Resonance Angiography - Time of Flight modality - acqui-
sitions. Not only are these vascular models able to replicate the cerebral
arteries, but also, the bifurcations formed by the arteries, and further-
more, one option within the models allows to embed an intracranial
aneurysm. Our goal in designing this set of tools was to train convo-
lutional neural networks for various pattern recognition tasks; namely,
we intend to label the main bifurcations forming the Circle of Willis, or
to automatically detect intracranial aneurysms. However, to efficiently
train a neural network, the fidelity of the mimicked vascular portions is
of paramount importance.

Keywords: Cerebral vascular tree - Cerebral bifurcations - Circle of
Willis - synthetic model - intracranial aneurysms .

1 Introduction

Various diseases may occur along the vascular tree. Such accidents can be par-
ticularly critical when located within the brain. Among the various vascular
pathologies, the intracranial aneurysms (ICA) can be particularly devastat-
ing [16]. Cerebral aneurysms commonly occur onto the bifurcations forming a
central arterial structure named the Circle of Willis (CoW) [3]. More specifi-
cally, they arise between the daughter arteries, they are referred to as saccular
aneurysms, due to their balloon shape. Intracranial aneurysms occur for 3 to 5%
of the world population.

* This work was supported by projects “eCAN” #ANR-23-RHUS-0013, #ANR-21-
CE17-0006 and INSERM CoPoC #MAT-PI-22155-A-01
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While an aneurysm itself may not pose immediate harm, if it bleeds (rup-
tures), it induces severe consequences such as subarachnoid hemorrhage, result-
ing in death (35%) or serious cognitive deficits (46%) [13]. Hence, it is crucial to
not only, automatically detect the aneurysms, but also, to monitor the portions
of the CoW presenting a higher risk (see Fig. 1). Prior to the emergence of deep
learning techniques such as Convolutional Neural Networks (CNNs), fewer works
focused on probabilistic or traditional machine learning approaches for labeling
the Circle of Willis bifurcations [2, 17, 21]. Recent advances include a deep learn-
ing based method for CoW arteries segmentation [7] and a two-step pipeline for
detecting CoW vascular bifurcations [14]. In the context of aneurysms detec-
tion, various deep learning-based methods have emerged for the segmentation
and/or detection of ICAs [9,15,18]. Of particular interest, the ADAM Chal-
lenge [20] compared 11 distinct deep learning approaches aimed at detecting
and/or segmenting aneurysms. It is crucial to highlight that the majority of ex-
isting methods have been developed using private clinical data, which includes
meticulously refined manual annotations. Indeed, when it comes to artificial in-
telligence, there is a recurring burden : the acquisition of manual annotation. To
address this issue, the authors in [6] suggested employing ”weak” annotations.

In this work, we intend to propose some alternatives to these manual anno-
tations. We have designed a set of synthetic Vascular Models (VaMos) 3 which
purpose is specifically to train CNNs. Although one can find synthetic models
in the literature, the final aim differs. In [10], the authors used Constrained
Constructive Optimization (CCO) for arterial model tree generation, mainly fo-
cusing on predicting vascular network growth. Similarly, works in [19] proposed
a macroscopic model emphasizing angiogenesis and capillary sprout formation,
and authors in [11] exploited CCO to estimate liver vascular network growth.
The work in [4] used CCO onto cerebral arteries, and incorporated level set
functions for growth estimation. Later, authors in [8,22] proposed VascuSynth,
a numerical vascular tree generation tool intended to model not only the geo-
metrical layout of the arterial tree, but also simulating the background noise,
albeit with limited accuracy in replicating the artery tortuosity. More recently,
SimVascular [12] offered advanced 3D mesh modeling for cardiovascular simu-
lation but lacks flexibility in modifying the geometry or modeling background
noise. Unfortunately, none of these models could be efficiently exploited along
with machine learning methods for Computer-Aided Diagnosis. Another inter-
esting approach was proposed in [5] where the authors generate synthetic blood
vessels surfaces. Variational Autoencoders and Generative Adversarial Networks
were used to generate mesh like 3D arteries and try to model stenosis; but only
onto isolated arteries, neither bifurcations, nor aneurysms were considered.

In this paper, we aim to come up with a highly reliable synthetic vascular
model. We aim to generate a substantial (synthetic) image dataset to train vari-
ous Deep-Learning algorithms. The rationale behind our approach is to demon-
strate that, even with a small dataset, if supplemented by VaMos, we can achieve
excellent results. In Section 2, we will present VaMos in details. In Section 3, we

5 Available here : https://gitlab.univ-nantes.fr/autrusseau-f/vamos
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will evaluate the improvements brought by the synthetic data on two distinct
tasks: i) bifurcations classification, and i7) ICA detection. Finally, in Section 4,
we conclude our work by summarizing the key findings.

Fig. 1: Bifurcations of Interest along the Circle of Willis (Yellow tags)

2 VaMos : Vasculature Models

Fig. 2 shows the overall structure of the Vasculature Models. Overall, three
important vascular components are being modeled : the arteries, the bifurcations
and the aneurysms. This means, one could either generate synthetic branches for
segmentation purpose, or bifurcations for their classification, or, it would also be
possible to generate only synthetic ICA to be merged onto actual MRI images for
their detection. Moreover, besides the different geometrical shapes of the vascular
tree, the various background matters are also mimicked (gray/ white matters,
cerebro-spinal fluid, lateral ventricles, etc.). The upper part in Fig. 2 (yellow
shaded block) represents the background noise modeling, whereas the lower part
(light blue shaded block), shows the replication of the arterial geometry. In order
to generate synthetic images with adjustable resemblance to the ground truth,
the VaMos have been designed to modify everything from its basis image portion.
Indeed the five green ellipses show all the modifications that can be brought onto
an aneurysm bearing bifurcation; namely, we can i) tweak the background shape,
i1) modulate the noise amplitudes, %) adjust the arteries’ tortuosity, iv) change
the diameters, and finally, v) add up an ICA (while modifying its shape). So
far, our model has been designed, adjusted and tested on Magnetic Resonance
Angiography images, with Time-of-Flight modalities (MRA-TOFS).
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Fig. 2: Structure of the synthetic Vasculature Models.
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2.1 Modeling the structure of the bifurcations

From the binary representation of a given MRA-TOF acquisition, the 3D skele-
ton is first computed, and then, the 3D graph is collected. Each single branch
from a given cropped area of interest (typically located around a bifurcation of
the CoW) is identified, the voxels along the centerline are represented as a 3D
curve, on which 3D B-splines will be fitted. Each branch (artery) can thus be
represented by the knots, the B-spline coefficients and the degree of the spline.
It is then relatively easy to tweak the 3D spline model by modifying details on
B-spline equations fitting. Figure 3 represents two different spline coefficients
modifications for a given bifurcation. The blue lines represent the actual bifur-
cation centerline, the red lines represents the best 3D fit, whereas the green
lines stand for the modified 3D splines (left panel : weak modifications and right
panel: stronger variation of the 3D splines).

2.2 Modeling the background gray levels

In the aim to generate a 3D noise presenting strong similarities with our target
MRA-TOF, our approach consists in producing a higher frequency noise patch,
which will be subsequently filtered through a predefined filter kernel, so as to
reach the target statistical properties. In other words, if a Gaussian noise patch
of standard deviation oy goes through a Gaussian filter of standard deviation
oy, the resulting filtered noise will present a standard deviation o, such that:

og 20 (1)

(204+/m)
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Fig.3: 3D spline fit of the three arteries forming a bifurcation for two distinct
spline modification parameters.

Indeed, when an image, composed of Gaussian noise of standard deviation o
is being filtered by a Gaussian filter of standard deviation og, the so-obtained
filtered image ends up with a standard deviation of 0. according to the eq. 8. For
our particular purpose, we intend to determine which Gaussian filter (of standard
deviation o) shall be used on the input image so as to obtain a filtered image
with a given target statistics (o), and hence o¢ ~ 0¢/(20+/T).

This allows us to generate a high frequency noise of average set to our tar-
get 3D crop. This noise will then be smoothed by a Gaussian filter (o). The
resulting image (of standard deviation o) will thus present strong statistical
similarities with the target portion of the MRA-TOF being modeled. Evidently,
our model allows to target slightly different statistical noises as the one extracted
from the ground truth cropped area.

An input image I(z,y) is Gaussian filtered as :

O(:z:,y) = Z Z

1=—00 j=—00

1 _ 2442

e 276 I(z+iy+j) (2)

2
2mo

According to the Bienaymé’s identity :

Var (3272, Xi) =201, Var(Xa) + 3272y 2y Cov(Xi, Xj) (3)

And thus, the variance is:

Var (30, ¢iXi) =20 2Var(X;) +2 x doi ez CiciCou(Xi, Xj)  (4)

However, if X, ..., X,, are pairwise independent (Cov(X;, X,;) =0, V(i # j)):

Var (Z cl-Xi> = Zc?Var(Xi) (5)
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(¢; being constants). We consider that the variance of I(x,y) is Var [I(z + i,y + i)] =
0g; we estimate the variance of the output image Var [O(z,y)] = 0F. Thus,

00 00 1 2142 2
2 _ 2 T 202
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For large o¢, the sum can be approximated as:
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and thus,
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2.3 Adding an intracranial aneurysm

Besides the generation of highly similar and yet easily tunable arteries, our
models allow to embed an intracranial saccular aneurysm between the daughter
arteries. The ICA is located onto the bisector of the two daughter arteries, at a
distance D from the bifurcation center such that:

Dﬂgg/)) ©

R being the average artery radius, @ the angle between the daughter arteries,
r is the ICA radius, and v, a growth factor allowing to push/pull the aneurysm
inward /outward the bifurcation.

Figure 4 shows a possible configuration of a bifurcation bearing an aneurysm.
The distance D separating the aneurysm center and the bifurcation node can be
computed as shown in the equation (9). The various constituents of this formula
are represented in Fig.4.

2.4 Synthetic Model Evaluation

We have conducted a thorough evaluation of the model features in terms of both
bifurcation anatomical evaluation, and aneurysm shape. We present on Fig. 5 a
comparison between the Ground Truth (GT) bifurcations and those generated
by the Synthetic Model (SM). We hereby compare the angles formed by the
three arteries, their diameters, as well as their tortuosity.

We can observe that the modeled branches exhibit strong similarities with
their respective ground truths. For this comparison experiment, 100 cropped
portions of the bifurcation #C (see Fig.1) were evaluated. Similarly, we have
evaluated various geometrical properties of the aneurysmal sacs, namely, the
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Fig. 4: Position of the synthetic aneurysm along the bisector between the daugh-
ter arteries.
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Fig.5: Evaluation of the bifurcation model with respect to the angles (A), the
diameters (D) and branches tortuosity (T).
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ICA volume, the outer surface, as well as the sphericity, elongation and flatness
coefficients.

We show on Fig. 6 how the various features of the modeled aneurysm actually
match quite accurately the ground truth features. Indeed, we can notice the
strong similarities between the MRA-TOF and the modeled features. We can
expect the model to be efficiently used to train neural networks. The next section
is dedicated to the experimental results.

3 Experiments and results

Let us now present the increased performances brought by using VaMos along
with neural networks on two specific tasks: CoW bifurcations classification (Task
1) and aneurysms detection (Task 2) on MRA-TOFs. We demonstrate the effi-
ciency of using the synthetic model alone or as a form of data augmentation for
a small dataset.

For each experiment, the images were manually labeled by a trained opera-
tor, and validated by an expert neuro-radiologist. The MRI images used in the
experiments were collected from different French institutions and were acquired
using 19 different MRI scanners from Siemens Healthcare, GE Medical systems,
Philips Medical systems and Fujifilm (see Table 1).

Table 1: Summary of the Time of flight (TOF) magnetic resonance imaging
(MRI) dataset used in the study.

Dataset| Maker MR device MFS (T)
Set-1 GE Optima MR450W 1.5
Set-2 GE Optima MR360W 1.5
Set-3 GE Discovery MR750W 3.0
Set-4 GE Signa HDxt 1.5
Set-5 GE Signa HDxt 3.0
Set-6 GE Signa Artist 1.5
Set-7 |SIEMENS Aera 1.5
Set-8 |SIEMENS Skyra 3.0
Set-9 |SIEMENS Avanto 1.5
Set-10 |SIEMENS Prisma 3.0
Set-11 |SIEMENS Sonata 1.5
Set-12 |SIEMENS Verio 3.0
Set-13 |SIEMENS| Magnetom Sola 1.5
Set-14 |SIEMENS| Magnetom Amira 1.5
Set-15 | Philips Ingenia 3.0
Set-16 | Philips | Ingenia Edition X 3.0
Set-17 | Philips Achieva 3.0
Set-18 | Philips Achieva 1.5
Set-19 | Fujifilm Echelon Oval 3.0
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3.1 Task 1: Classification of CoW bifurcations

This section is devoted to the classification of 3D patches encompassing the
Bifurcations of Interest (Bol) along the CoW via 3D CNNs. In our research,
we focused on the 13 Bol being associated with the highest risk of aneurysm
occurrence [17]. These specific bifurcations are depicted in Fig. 1.

Dataset: For Task 1, we have selected 154 MRA-TOF images. For the training
phase, a total of 110 images were used, while an independent test dataset was
composed of 44 images. To ensure consistency in image dimensions and voxel
spacing across the dataset, we re-sampled all MRA-TOFs to a uniform voxel

spacing of 0.4 mm3.

Data annotation and data generation: To annotate the Ground Truth
patches, we used a 3D skeleton computed on the vessel segmentation, along with
its corresponding 3D undirected graph. The graph nodes help us identifying the
center of each bifurcation and extract 32 x 32 x 32 voxel patches with an isotropic
voxel size of 0.4 mm around these coordinates, resulting in a total of 1180 bi-
furcations in the training set and 386 in the test set. To assess the potential
enhancements brought by VaMos, we have generated 40 synthetic models for
each Bol. These models were designed to replicate the features of the actual
bifurcations, with slight modifications (diameters, tortuosity, etc.)

Neural network and evaluation protocol: Building upon our previous re-
search [14], we employed a 3D-CNN for classification purposes (see Fig. 7). The
model is composed of nine convolutional layers, each with a kernel size of 3 and
a stride of 1. These layers are organized into five convolutional blocks with 32,
64, 128, 256, 512 respective feature channels. The last 3 layers are fully con-
nected. Dropout layer is used for regularization. We implemented the neural
networks considered in this work using Tensorflow framework (2.9.0).Training
and inference were performed on an NVIDIA RTX A5000 GPU with 16 GB of
memory.

We have evaluated the improvements using three different training dataset
sizes: D1 (48 TOFs), D2 (82 TOFs), and D3 (110 TOFs). Each dataset was
exploited in two distinct experiments: Exp. #B1 involved training exclusively
with actual TOF patches, while Exp. #B2 used only synthetic patches for train-
ing. Each dataset was partitioned into five folds for cross-validation. The models
were trained using categorical cross-entropy loss, Adam optimizer and a learn-
ing rate of 0.0001. Training was conducted for 100 epochs, selectively saving the
model with the best performance on the validation fold. After training, model
evaluation involved using a holdout test set, with final predictions derived by
averaging predictions from the five-fold models.

Classification results: Our evaluation aimed to assess the impact of using Va-
Mos across various training dataset sizes. The overall performance is evaluated



10 R. Nader et al.

Conv3D+BN+ReLU ~ —> Pool3D Flatten Fully connected Fully connected
+BN+Dropout+ReLU +softmax

-0 UG-
512@3x3x3 128 13
128@3x3x3 (x2) 256@3x3x3 (x2) 512

2)
Input 64@3x3x3 (x2)

volume 32@3x3x3 (x2)

Fig.7: CNN architecture used for Bols classification
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Fig.8: F1-Score improvements brought by using the VaMos synthetic patches
(on the test set).

by computing the Fl-score across all the samples for each experiment. The re-
sults are shown in Fig. 8a. When using actual TOF patches, we notice a notable
increase of Fl-score, from 79.7% to 88% when the dataset size increases (from D1
to D3). Similarly, when using VaMos, the Fl-scores also significantly increase,
from 84.2% to 90.6%, although the degree of variation between cases is less pro-
nounced. Across all datasets, the performances are consistently increased when
using VaMos. The improvements are more pronounced for D1 (up to 4.5%) than
D2 and D3 (up to 2%). We also report the score for each class (bifurcation label)
when using D3 in Figure 8b. We observe on this plot that when VaMos patches
are included (blue bars, labeled “VaMos-D3”), a better Fl-score is achieved for 9
of the 13 classes, compared to a training using only TOF crops (red bars labeled
“TOF-D3”).
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3.2 Task 2: Aneurysms detection

Let us now evaluate the possible improvements brought by using VaMos in an
intracranial aneurysms detection scenario.

Dataset: For Task 2, we have collected 105 scans with unruptured ICAs (dis-
tinct from those used in Task 1). The dataset was split into 70 training images,
used for both training and validation, and a separate test set of 35 images. Each
image contains from 1 to 4 aneurysms, totaling 138 aneurysms with a mean
radius of 2.57 + 0.89 mm.

Data sampling and generation: To address the ICA detection task, we
adopted a 3D U-Net implementation used in [6]. This latter was chosen to
effectively perform the aneurysm segmentation and its subsequent detection.
We use small patches (64 x 64 x 64 voxels, i.e. 25.6 mm wide). For positive
samples (with ICA), we extract 10 copies for each aneurysm by shifting its po-
sition within the patch. For negative patches, we extract 20 samples for each
volume, selected to encompass cerebral arteries (but aneurysm-free). For data
generation, 134 aneurysm-free patches from Task 1 served as a basis to generate
998 synthetic patches containing an ICA. Various aneurysms shapes and sizes
were simulated by manipulating the radius parameter and applying elastic de-
formations that emulate the characteristics of original scans, as shown in Fig 6.
Moreover for a complete comparison, we apply traditional data augmentation
techniques on positive patches, namely rotations within the interval [—15°, +15°]
and (90°,180°,270°), as well as horizontal and vertical flipping and Gaussian
noise addition.

Training and evaluation protocol: The U-Net was optimized using a loss
function combining Dice loss and binary Cross-entropy loss along with Adam op-
timizer and a learning rate of 0.0001. To assess potential improvements brought
by VaMos, three distinct experiments were conducted. In Exp. #A1, we trained
a baseline model using 50 TOF's (630 positive patches). In Exp. #A2, the train-
ing dataset was augmented with patches via 7 traditional data augmentation
operations (with a total of 5040 patches (63047 x 630). In Exp. #A3, the train-
ing dataset was augmented with the 998 VaMos patches (total of 1628 positive
patches). We used the remaining 20 TOF's as a validation data for all three ex-
periments and the separate test set composed of 35 TOFs (with a total of 50
aneurysms) for inference. During the inference stage, patches centered around
cerebral bifurcations, identified through an automated vessel segmentation [14]
and subsequent 3D undirected graph generation, are selectively retained to tar-
get regions most susceptible to aneurysm development, enhancing the accuracy
of the results.

ICA detection performance: The performances were assessed on the test
set using two key metrics: lesion-level sensitivity and False Positive (FP) rate
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(FP per TOF), as outlined in [1]. To calculate the evaluation metrics, each
predicted connected component (CC) is treated as a potential detection. If the
center of gravity of a CC is present in a ground truth CC, it is classified as a
true positive detection. Otherwise, it is labeled as a false positive. In Exp. #A1,

Table 2: The results of aneurysm detection task.

Methods [Sensitivity (%)|FPs/case
Exp. #A1 72 0.37
Exp. #A2 76 1.31
Exp. #A3 88 1.45

the CNN successfully detected 36 aneurysms within a dataset comprising 50
instances, resulting in a lesion-level sensitivity of 72%. This sensitivity increased
to 76% in Exp. #A2 with 38 correctly detected aneurysms. However, when
incorporating VaMos patches, the lesion level sensitivity reaches 88% with 44
detected aneurysms. Moreover, within Exp. #A1, the network displayed a low
false-positive rate of 0.37, which respectively increased to 1.31 and 1.45 for Exp
#A2 and Exp #A3 upon incorporating data augmentation (see Table 2).

4 Discussion and Conclusion

In this section, we delve into the impact of the synthetic vasculature model,
which effectively mimics portions of MRA-TOF images. The synthetic model
encompasses several processes, it accurately models the geometry of cerebral
arteries and their bifurcations, it introduces surrounding noise, and incorporates
aneurysms of diverse sizes and shapes. Our goal is to provide a comprehensive
dataset that can enhance the performance of various deep learning tasks, such
as the classification of bifurcations forming the Circle of Willis or the detection
of cerebral aneurysms. In this study, we deliberately opted to employ basic deep
learning architecture with straightforward optimization techniques. Our primary
focus was on the contribution brought by VaMos.

Regarding Task 1, we chose to exclusively use VaMos as the source of train-
ing patches. A direct comparison was made with a training solely performed on
actual TOF patches. The primary finding is that using hundreds of synthetic
patches enhances the classification accuracy across all dataset sizes. This im-
provement is particularly notable when considering a small dataset (up to a
4.5% increase in Fl-score). On average, achieving similar performance is possi-
ble by annotating only 82 TOFs supplemented with VaMos, resulting in com-
parable Fl-score (0.863 for VaMos-D2, 0.88 TOF-D3 and 0.906 for VaMos-D3).
Our model demonstrates superior performance across most classes, with excep-
tions observed for classes M, H, and J. The challenges in modeling M may stem
from its complex anatomical structure, potentially resulting in trifurcations or
quadrifurcations. Uncertainties encountered by neuroradiologists in annotating
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the MCA branch likely contribute to discrepancies in class H, while hypoplastic
cases of PCOM arteries present challenges for modeling J. Ongoing works focus
on adapting VaMos to address these specific cases.

A prominent achievement of our research is the successful generation of syn-
thetic aneurysms seamlessly integrated into MRA scans lacking aneurysms, sig-
nificantly enriching limited dataset. The primary outcome of Task 2 reveals that
training the CNN using VaMos patches as Data augmentation yielded a marked
improvement in sensitivity for detecting intracranial aneurysms compared to
training solely on actual TOFs. Whereas the latter missed 28% of lesions in
the test data, for the former, the CNN only missed 12% aneurysms. Traditional
data augmentation techniques yielded only a modest improvement in sensitivity
(4%) compared to VaMos (16%). This is consistent with the limitations inherent
in these traditional methods. These techniques primarily enhance the model’s
ability to generalize from existing examples without fundamentally diversifying
the range of anatomical structures represented in the training data as they do
not introduce variations in critical features such as aneurysm shape and size,
which are essential for effectively training models to recognize a wide variety
of aneurysms across different patients. In contrast, advanced generation models
like VaMos are designed to create more complex and diverse synthetic examples
that include significant variations in aneurysm characteristics. This was accom-
plished with a slight increase in false positive rate highlighting the efficacy of
our approach. Missed detection in Exp. #A3 predominantly stemmed from small
aneurysms. Out of the 6 missed aneurysms, 4 had a radius below 1.5 mm. For
such aneurysms, these missed detection can also be attributed to the uncertainty
in the initial expert labeling. Nonetheless, our forthcoming endeavors will specif-
ically target this subset of aneurysms, by generating more synthetic aneurysms
with small radius.

References

1. Adams, W., Laitt, R., Jackson, A.: Time of flight 3d magnetic resonance angiogra-
phy in the follow-up of coiled cerebral aneurysms. Interv Neuroradiol. 5(2), 127-37
(1999). https://doi.org/10.1177/159101999900500203

2. Bogunovic, H., Pozo, J.M., Cardenes, R., Roman, L.S., Frangi, A.F.: Anatomical
labeling of the circle of willis using maximum a posteriori probability estimation.
IEEE Transactions on Medical Imaging 32(9), 1587-1599 (2013)

3. Brown, R.D., Broderick, J.P.: Unruptured intracranial aneurysms: epidemiology,
natural history, management options, and familial screening. The Lancet Neurology
13(4), 393-404 (2014)

4. Bui, A.V., Manasseh, R., Liffman, K., Sutalo, I.D.: Development of optimized
vascular fractal tree models using level set distance function. Medical engineering
& physics 32(7), 790-794 (2010)

5. Danu, M., Nita, C.I., Vizitiu, A., Suciu, C., Itu, L.M.: Deep learning based gener-
ation of synthetic blood vessel surfaces. In: 2019 23rd International Conference on
System Theory, Control and Computing (ICSTCC). pp. 662-667. IEEE (2019)

6. Di Noto, T., Marie, G., Tourbier, S., Aleman-Goémez, Y., Esteban, O., Saliou, G.,
Cuadra, M.B., Hagmann, P., Richiardi, J.: Towards automated brain aneurysm



14

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Nader et al.

detection in tof-mra: Open data, weak labels, and anatomical knowledge. Neuroin-
formatics 21(1), 21-34 (2023)

Dumais, F., Caceres, M.P., Janelle, F., Seifeldine, K., Arés-Bruneau, N., Gutierrez,
J., Bocti, C., Whittingstall, K.: eicab: A novel deep learning pipeline for circle of
willis multiclass segmentation and analysis. Neurolmage 260, 119425 (2022)
Hamarneh, G., Jassi, P.: Vascusynth: Simulating vascular trees for generat-
ing volumetric image data with ground truth segmentation and tree anal-
ysis. Computerized Medical Imaging and Graphics 34(8), 605-616 (2010).
https://doi.org/10.1016/j.compmedimag.2010.06.002

Joo, B., Ahn, S.S., Yoon, P.H., Bae, S., Sohn, B., Lee, Y.E., Bae, J.H., Park,
M.S., Choi, H.S., Lee, S.K.: A deep learning algorithm may automate intracranial
aneurysm detection on mr angiography with high diagnostic performance. Euro-
pean Radiology 30, 5785-5793 (2020)

Karch, R., Neumann, F., Neumann, M., Schreiner, W.: A three-dimensional
model for arterial tree representation, generated by constrained con-
structive optimization. Computers in Biology and Medicine 29(1), 19—
38  (1999).  https://doi.org/https://doi.org/10.1016 /S0010-4825(98)00045-6,
https://www.sciencedirect.com/science/article/pii/S0010482598000456
Kretowski, M., Rolland, Y., Bezy-Wendling, J., Coatrieux, J.L.: Physio-
logically based modeling of 3-d wvascular networks and ct scan angiog-
raphy. IEEE Transactions on Medical Imaging 22(2), 248-257 (2003).
https://doi.org/10.1109/TMI.2002.808357

Lan, H., Updegrove, A., Wilson, N.M., Maher, G.D., Shadden, S.C., Marsden, A.L.:
A re-engineered software interface and workflow for the open-source simvascular
cardiovascular modeling package. Journal of biomechanical engineering 140(2),
024501 (2018)

Ma, N., Feng, X., Wu, Z., Wang, D., Liu, A.: Cognitive impairments and risk
factors after ruptured anterior communicating artery aneurysm treatment in low-
grade patients without severe complications: A multicenter retrospective study.
Front Neurol 12:613785 (2021)

Nader, R., Bourcier, R., Autrusseau, F.. Using deep learning for
an automatic detection and classification of the wvascular Dbifurca-
tions along the circle of willis. Medical Image Analysis p. 102919
(2023). https://doi.org/https://doi.org/10.1016/j.media.2023.102919,
https://www.sciencedirect.com/science/article/pii/S1361841523001792

Park, A., Chute, C., Rajpurkar, P., Lou, J., Ball, R.L., Shpanskaya, K.S.,
Jabarkheel, R., Kim, L.H., McKenna, E., Tseng, J., Ni, J.C., Wishah, F., Wit-
tber, F., Hong, D.S., Wilson, T.J., Halabi, S.S., Basu, S., Patel, B.N., Lun-
gren, M.P., Ng, A., Yeom, K.W.: Deep learning—assisted diagnosis of cere-
bral aneurysms using the headxnet model. JAMA Network Open 2 (2019),
https://api.semanticscholar.org/CorpusID:174811733

Pascalau, R., Padurean, V.A., Bartos, D., Bartos, A., Szabo, B.A.: The geometry
of the circle of willis anatomical variants as a potential cerebrovascular risk factor.
Turk Neurosurg 29(2), 151-158 (2019)

Robben, D., Tiretken, E., Sunaert, S., Thijs, V., Wilms, G., Fua, P., Maes, F.,
Suetens, P.: Simultaneous segmentation and anatomical labeling of the cerebral
vasculature. Medical Image Analysis 32, 201-215 (2016)

Shi, Z., Miao, C., Schoepf, U.J., Savage, R.H., Dargis, D.M., Pan, C., Chai, X.,
Li, X.L., Xia, S., Zhang, X., et al.: A clinically applicable deep-learning model
for detecting intracranial aneurysm in computed tomography angiography images.
Nature communications 11(1), 6090 (2020)



19.

20.

21.

22.

VaMos: Application to bifurcation classification and aneurysm detection 15

Szczerba, D., Székely, G.: Macroscopic modeling of vascular systems. In: Dohi,
T., Kikinis, R. (eds.) Medical Image Computing and Computer-Assisted Interven-
tion — MICCAI 2002. pp. 284—292. Springer Berlin Heidelberg, Berlin, Heidelberg
(2002)

Timmins, K., van der Schaaf, I., Bennink, E., et al.: Comparing methods of de-
tecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: The
ADAM challenge. Neurolmage 238, 118216 (2021)

Wang, X., Liu, Y., Wu, Z., Mou, X., Zhou, M., Ballester, M.A.G., Zhang, C.:
Automatic labeling of vascular structures with topological constraints via hmm.
In: Medical Image Computing and Computer-Assisted Intervention- MICCAT 2017:
20th International Conference, Quebec City, QC, Canada, September 11-13, 2017,
Proceedings, Part II 20. pp. 208-215. Springer (2017)

Zhao, M., Hamarneh, G.: Bifurcation detection in 3d vascular images using novel
features and random forest. In: 2014 IEEE 11th International Symposium on
Biomedical Imaging (ISBI). pp. 421-424. IEEE (2014)



