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Abstract

The assessment of very low quality visual data is known to be difficult. In par-
ticular, the ability of humans to recognize encrypted visual data is currently
impossible to determine computationally. The human vision research commu-
nity has widely studied some particular topics, such as image quality assessment
or the determination of a visibility threshold, while others are still barely re-
searched, specifically visual content recognition. To this day, there does not
exist a reliable recognition index that can be employed for such tasks.

In order to enable the study of human image content recognition, and in an
attempt to propose a corresponding recognizability index, we build a dataset of
selectively encrypted images together with subjective ground-truth about their
human intelligibility. The methods of acquisition, setup, protocol, outlier detec-
tion, are described and we suggest how to calculate a recognition score as well as
a recognition threshold. The performance of traditional visual quality indices to
predict human visual content recognition is assessed on these data and found to
be inapt to estimate recognition of visual content. Contrasting, structure based
recognition indices as proposed for this task are shown to represent a promising
starting point for further research. To facilitate the creation of a recognition
index and to foster further research into human visual content recognition and
its relation to the human visual system we will make the database publicly
available.
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1. Introduction

The general assessment of the security of encrypted visual data is difficult.
In this context, security is understood as “visual security”, i.e. the amount
of visual information still present in such protected data, without considering
cryptanalysis in the sense of analysing the cryptographic strength of the un-
derlying cipher. In most partial / selective encryption schemes, the employed
ciphers are beyond any doubt with respect to their cryptographic strength in
any case, e.g. AES in some appropriate mode. What is of interest is the visual
information still present in the data, in case of selective encryption in unpro-
tected data parts and in the interference among protected and unprotected
parts, respectively.

Selective encryption (SEnc) is the encryption of a selected part of a media
file or stream, utilizing state of the art ciphers like AES. The goal is to achieve
confidentiality for the visual content, or parts thereof, while still maintaining the
file format. The latter means that the encrypted file is still usable as the media
file it actually was before encryption. Specifically, format compliance means
that a standard compliant decoder should be able to decode the encrypted
image/video, and thus produce an output image/video. Thus, when we talk
about the quality or recognizability of the encrypted visual data we talk about
the output of a standard compliant decoder processing a format compliantly
encrypted media stream.

Over the years, a large number of SEnc schemes have been introduced, e.g.,
[4,17, 36,12, 5, 29, 28], and an essential question is how to assess their respective
visual security. The unfortunate truth is that in most cases security is not
properly assessed (see as example a discussion on methodology often employed
to assess chaos-based encryption [26]). Often, authors only display a few images
as ‘proof’. Also, classical visual quality indices (VQI) are frequently used to
estimate the visual security, e.g., PSNR and SSIM, while it has been shown
that this is infeasible for the sufficient encryption scenario [10, 11], i.e., as soon
as quality is very low and questions of intelligibility play a role. Even worse, it
has been also shown that metrics originally intended to determine visual security
also do not work properly [10].

When considering varying application context, visual security can have very
different meanings [37]: Transparent encryption aims at revealing a low quality
version of the content, e.g., as a preview to attract customers, while protecting
the high quality version. Sufficient encryption aims to reduce the visual content
to a level where a consumption of the image or video is no longer possible but
does not care if potential content is leaked, e.g., consumers still recognize what is
going on in a movie but the quality is so low that a pleasant viewing experience
is prevented (pay-per-view scenarios). Confidential encryption is the next step



where the goal is to actually make the content of the data unrecognizable. This
is the type of visual security we target in this work. So the aim is to steer
encryption strength not just to reduce quality, but to prevent scene and object
recognition and understanding, respectively. Intelligibility of visual context has
to be prevented. Note the difference to cryptographical encryption where the
leakage of any data-related information has to be prevented which might enable
to link plain and cipher text, respectively, not only considering visual clues.

For the first two of the above mentioned scenarii, the final user typically is
a human observer in the context of a media entertainment context, controlled
by digital rights management, staring at the protected images, and (eventually)
being motivated by the reduced quality to pay for a full quality version. The
question of identifying the visual content is either of no relevance (sufficient
encryption) or is even a prerequisite of the application scenario (transparent
encryption). For confidential encryption, the final user might be human as well
as a recognition algorithm that tries to work on protected imagery. First work
on the latter scenario to determine respective visual security has already been
done: E.g. [18] considers the (dis)ability of SIFT-keypoint matching between
images as a security metric and the (mis)conduct of proper segmentation is used
as a security criterion in [19]. Also more application related investigations have
been done by investigating the feasibility of biometric recognition on protected
(i.e. selectively encrypted) data, e.g. in the context of fingerprint [2], iris [27],
and fingervein recognition [32], respectively. Here, the security metric is the
biometric comparison accuracy obtained.

In this work, we focus solely on human recognition in the context of confi-
dential encryption. Application scenarios include to prevent leakage of movie
content when distributing pre-release trailers or to prevent human security per-
sonnel from recognizing people in surveillance data. To automatically ascertain
the recognizability of image content, the use of a visual recognition index (VRI),
similar to a VQI, would be desirable. In order to come up with such a tool,
similar to the process of establishing and assessing VQIs (compare the LIVE
[31] and TID [24] datasets, respectively), a dataset with protected / encrypted
visual material together with subjective ground-truth on the human intelligi-
bility of these data is required. However, currently, neither proper VRI nor
suited datasets to facilitate their developments do exist. In [34], a dataset of
transparently encrypted images together with human perception ground-truth
data has been released. However, this data is entirely unsuited for the human
recognition context and VRI development (as transparently encrypted imagery
is required to be recognizable by the application context). Also, the usage of the
lower quality spectrum of impairments of the LIVE and TID datasets as done
in [7] is of no use for the confidential encryption scenario as the intelligibility of
the visual information in these two datasets is out of question.

Therefore, in this work, we intend to provide a corresponding dataset of en-
crypted visual data to facilitate the development of a VRI. The provided data
also comprises results of human observer experiments at the recognition thresh-
old of image content. Currently, as preparatory work, there only exists a set of
recommendations for the acquisition of such a database, [6], which were adapted



Reference Images

b) Example of the jpg encryption type and all the steps from clearly recognizable to unrecognizable

Figure 1: Sample of Images contained in the database.

from the International Telecommunication Union (ITU) and International Elec-
trotechnical Commission (IEC) recommendations for image quality evaluations
to meet the confidential encryption context.

The rest of the paper is structured as follows: Section 2 describes the
database, how the images were created and how the acquisition of subjective
recognition scores were performed; Section 3 gives details on how to analyze the
raw observer scores from the previous section, how outliers are found and how
the content recognition threshold is estimated; Section 4 uses the database to
test the capabilities of visual quality indices (VQI) to separate recognizable and
unrecognizable images. Section 5 finally discusses the findings, gives guidelines
and recommendations, and concludes the paper.

2. Database—Acquisition and Content

2.1. Images in the Database

One major aim when selecting target images for the inclusion in our database
is that we wanted to have a considerable overlap with a database from literature,
the LIVE database [31]. We have thus selected a set of images from the Kodak
database! which are contained in the LIVE database as well. We also included
an additional test image to have a non-natural image containing large single
color patches, which can for example be found in drawings or animated films,
and a more structured representation of frequency. To gauge the effect of color
on the recognition we additionally included two gray-scale versions of images in
the database. Overall, 12 color images, and 2 gray-scale ones were used. Despite
the reduced number of images, the experiments had to be split into two sessions
to combat viewer fatigue. Figure la shows the reference images contained in
the database.

In order to maintain the experiment within a reasonable time-frame, we
have selected 6 encryption methods operating with 9 protection strength steps

Thttp://www.rOk.us/graphics/kodak
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(overall, 10 images including the original). The range was chosen “by hand”
to include at least a clearly intelligible, albeit strongly distorted, version of the
image and then in distinct steps towards an obviously unrecognizable image.
This was done by selecting a parameter set for the encryption manually based
on a single image and then applying this set of parameters to the whole database.
The results for the jpg (described later) encryption can be seen in Fig. 1b.

The choice of encryption techniques was a difficult one and was limited by
practical means. The encryption had to have settings allowing for a gradual
change to get roughly 9 different levels of quality as required. Further, we used
publicly available encryption methods only for reproducibility and ease of use.
Even so, we had to “cheat” a bit with some encryption methods by iterating the
application of the encryption to push it beyond the recognizability boundary.

Let us now provide some details on the six encryption types being used in
this database:

7pg: This method [40] encrypts, based on AES, the AC coefficient coding of
JPEG encoded images. The order of run-length coded symbols, and correspond-
ing values, are permuted, as are coefficient value bits. In addition, the order of
blocks using the same Huffman table with an interleaved minimum coded unit
are permuted. The parameters for this encoding are either low’ or the number
of rounds. For low, only the first 8 AC coefficients were encrypted to get a
proper high quality representation of the image. For the rest, multiple rounds
of JPEG encoding and encryption were used since a single round of encryption,
even if encrypting all AC coefficients, could not push the image beyond the
recognition threshold.

H.265: The approach in [12] focuses on the encryption of sign coefficients
in HEVC data. The encryption is done by creating a YUV sequence of length
one (no motion) and applying the encryption to that sequence. The decoded
frame is used as an encrypted image. In the context of H.265 this means we
only encrypt I-frames. Since a single frame encryption has a rather limited
impact on quality we used an iterative method similar to jpg to lower the
quality, reencode and encrypt again for N rounds (an image is converted to
YUV, encoded to H.265, encrypted and decoded to a single frame — this is one
round). The parameters were split into two parts: what is encrypted and for
which target quality. Quality is given either as the quantization parameter, or
the number of rounds, in which case the quantization parameter was fixed at
22.

72k and j2kne: The method from [35] encrypts a JPEG2000 file in either
layer or resolution progression by encrypting CCPs (codeblock contribution to
packet) of code blocks while maintaining signal markers. The ordering of con-
tributing data in the bit stream is arranged such that the base information
comes at the beginning, followed by refinement blocks which bring more and
more detail into the image. Consequently, the encryption method can encrypt a
window in this bit stream with an offset and a size. The difference between j2k
and j2kne is that regular j2k uses error concealment in decoding, which tries to
improve the image quality in case “strange” code block content arrives (which
is the case for encrypted parts), while j2kne has turned error concealment off.



jxr: A set of format-compliant encryption methods for the JPEG XR stan-
dard is proposed in [17]: Coefficient scan order permutation, sign bit encryption,
transform-based encryption, random level shift encryption, index-based VLC
encryption, and encrypting entire frequency bands. A diverse set of parameters
was used to get to desired steps in quality, specifically a combination of set sign
bit encryption modes for DC sign bits, LP sign bits or HP /FLEXBITS. We also
enable alternative transform encryption and random level shift encryption can
be enabled for the DC, LP and HP bands. Here, we can specify the amount of
encryption (as a percentage).

fake: This method is not actually an encryption method but a ’fake’ en-
cryption in the sense that it only spreads out information in the image thereby
reducing its quality. The parameters give the operations used to transform the
original into the “encrypted” version. The following operations are applied:

e generate an average map A with a varying window size X;

e scale down all pixel intensities I towards A with factor X, that is I’ =
A+ X(I - A);

e scale down all pixel intensities I towards A with factor uniformly dis-
tributed between 0 and X, that is I’ = A+ U(0, X)(I — A);

e noise is generated averaging pixel intensities I towards a uniformly dis-
tributed intensity;

e noise is generated averaging pixel intensities I towards a Gaussian dis-
tributed intensity.

Split of the Database for Acquisition: To prevent viewer fatigue we
aimed to keep a single session of ground truth acquisition well below the one
hour mark, in order to achieve this we split the database into two test sets:
SPLIT1 contains the encryption types fake, j2k and j2kne, SPLIT2 is composed
of jzr, jpg and H.265. This means a session should take at most 50 minutes
: 14 images with 9 distortion steps for each of the three encryption types and
maximum 8 seconds per image leads to 50 minutes and 24 seconds. In practice
most sessions stayed well below this time since most pairs in the recognizable
range can easily be selected faster than the allotted 8 seconds.

2.2. Setup for Recognition Groundtruth Acquisition

The Video Quality Experts Group (VQEG) and ITU groups regularly issue
recommendations [39, 14, 1, 3] concerning the subjective setups and protocols
for quality assessment. These recommendations are aimed towards the quality
estimation based on human observer scores, or the visibility threshold tracking,
but none are issued for a recognition task. In [6] these recommendations were
evaluated in terms of applicability for the acquisition of a database for image
content recognition. We will follow these combined guidelines [6] and adapt
them where necessary. In the following we will briefly describe the environment
and procedure used during the acquisition of the subjective recognition data.



(a) Setup for the tests in SE. (b) Setup for the tests in CE.

Figure 2: Recording conditions for the two environments.

It should be noted that the subjective acquisitions were collected in two dif-
ferent locations: One had the option to have a more stringent setup (a controlled
environment CFE), the other only to a lesser degree (semi-controlled environment
SE). The setups are shown in Fig. 2, in CE the room was properly darkened
and had a controlled ambient light while in SE the blinds were drawn and an
old monitor was used as a glare shield to prevent reflections on the test monitor.

Layout of the experiment: Three originals and three encrypted images
are shown. The way this is set up and displayed to the user is shown in Fig. 3.
One pair of images is an original and derived encrypted image, the other four
images are unrelated. The participant must select the matching pair by clicking
on the two related images. This is an adaptation of the two alternative forced
choice protocol from the recommendations. The difference is that a larger pos-
sible number of choices delimit the non-recognition threshold better since the
chance for a random ‘correct’ guess is lower. See the following sections for the
calculation of the threshold and the impact of the probability on the calculation.
We will refer to this method as Match2 as this is what it was called in [6] where
it was first recommended.

Viewing distance: In both the CF and SFE, a supervisor instructed the
observer to keep a proper viewing distance. The viewing distance was set to 6
times the images’ height.

Scaling: Controlled and semi controlled environment have screens which
are sized so that the images are not scaled.

Illumination and Calibration: Optimally a controlled environment and
a high quality calibrated monitor is recommended. The specifications in the
CE? were: Illuminant white point CIE D65, maximum screen luminance of 200
cd/m?, screen gamma function of 2.20, contrast ratio/ black point of 2 cd/m?.
Moreover, the room background illumination was set to 10 lux. Our setup was

2Calibration was conducted with an X-Rite i1 Display Pro ©)



Figure 3: Setup of the acquisition experiment with three ’original’ and three ’encrypted’
choices.

thus compliant with the recommendations of [38], [15] and [16]. In SE these
parameters were not controlled.

Viewing Time: We restricted viewing time to prevent observer fatigue and
to ensure a timely conclusion, respectively, which is important for the acquisition
of a large amount of data. The time chosen was 8 seconds in opposition to the
recommended 10 sec [15]. The reasons for this are twofold: 1) the recognizability
framework is easier than quality assessment and consequently takes less time
and 2) it allows for more comparisons before observer fatigue sets in which is
an important practical consideration.

Vision Check: For the CE environment a proper vision test was performed:
Observers were screened to ensure perfect visual acuity and to detect possible
color deficiencies. The Snellen eye chart was used to control the acuity, and
Ishihara color plates were used to validate a normal color vision. For the SE
setup the means were more limited but we utilized an online vision® test to
check visual acuity, near vision and color vision.

About the Observers: The minimum number of observers recommended
by all standards is 15 and was exceeded in all environments. In CE, 90 observers
took part in the study with 45 observers enrolled per half session (SPLIT! and
SPLIT2, see Split of the Database for Acquisition in Section 2). As previously
mentioned, the observers were screened for correct color vision and acuity. Ex-
cept for 3 observers who had a 20/25 vision, all other observers had at least a
20/20. Three observers had a red/green color deficiency. The observers’ average
age was 33.6 and 34.8 for SPLIT1 and SPLIT2 respectively. Only one of these
observers (with a 20/25 acuity) was discarded during the outliers detection step
(as explained later in section 3).

In SE, 60 Observers took part in the study with 30 per half session. The
online test revealed two observers with a red/green deficiency. The average age

Shttps://www.essilor.com/en/vision-tests/test-your-vision
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was 35.37 and 34.62 for SPLIT1 and SPLIT?2 respectively.

During the subjective experiment, observers were asked to use their con-
tact lenses or spectacles. Two distinct populations were tested. Most of the
observers enrolled for CE were not computer scientists, but came from biology
departments within the University of Nantes, whereas most of the observers of
SE were computer scientists from the University of Salzburg, and some were
familiar with the input images and distortions.

2.3. Where to get the Database?

The database is available online as University Salzburg Encryption Evalu-
ation Database (USEE DB) at http://www.wavelab.at/sources/USEE. The
database contains the original images, encrypted images and the individual bi-
nary, correct/incorrect match, and score per user (the output of the experi-
ments). It also contains a score for each image based on the analysis methods
in the following chapters and likewise a classification into recognizable or hid-
den image content. The encryption parameters for each file is explained in the
database documentation.

3. On the Calculation of the Recognition Threshold

3.1. Techniques for the Analysis of Data

The data generated in the experiments differ from common quality exper-
iments outputs. The main difference is that during quality evaluation each
observer gives a numerical (quality) rating for each image, and based on these
ratings the outliers can be detected. For each recognition task conducted here,
the observer only generates a binary output, either “content recognized” or
“content not recognized”. The final score for each recognition task is an ag-
gregate over all observers, and is expected to trend towards the probability of
random choice in the case of unrecognizability.

Outlier detection: We will follow the guidelines and reasoning laid out
in [6] regarding outlier detection, and we will briefly summarize the relevant
parts here. Outlier detection in the classical sense will not work, since the data
being collected are not numerical scores, but rather binary decisions representing
correct or incorrect recognition. A simple error aggregate also will not work
since two observers can have the same number of errors while not agreeing on
a single image. The solution is to view results as a vector with binary values,
then the Hamming distance (HD), that is the number of differences between the
two vectors, can be used to compare two observers. An outlier is an observer
with a large distance from the majority of observers. We perform a hierarchical
clustering which starts with the smallest distance and continues to cluster the
elements (i.e. observers) together until a single cluster has formed. The outliers
can then be detected based on statistics of similarity between observers: with
O being the set of observers and

D:{HD(O“OJHVO“O] EI,i#j} (1)
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the set of pairwise distances, we use the z-score
2p = (D) + 30(D), (2)

where p is the expected value and o is the standard deviation, to find observers
which are very far from the group consensus. As aggregation of cluster size, the
maximum over all pairwise distances is used, meaning that all pairwise distances
in the cluster are below the chosen threshold zp = p + 30.

The way the result of this analysis looks in practice can be seen in Figure 4
later in the paper. The clustering is displayed as a dendrogram, a tree of merge
decisions, the y-axis gives the merges at the height of the new cluster size. If
the tree is cut off at a height matching zp it will split into sub clusters where
each cluster does not contain outliers. The largest such cluster is then used as
the “correct” set of observers, the others are considered outliers (marked in red
in the dendrograms).

Calculation of a score and ordering by recognizability: We have a
set of numbered images I; € I,7 = 1,...,7I to be evaluated by a numbered
set of observers, O; € O for j = 1,...,#0. Each observer is represented by a
vector containing one decision per image, either recognized (a match is found)
with a score of 0 or not recognized with a score of 1: O; = (0]1- ...,o?“), j=
1,...,#0 with 0} € {0,1}. A recognizability score for an image S(I;) can then
be calculated as:

1 ¥
S(I) = 70 Z;o}. (3)

An ordering based on recognizability can now be established based on S(I;),
we also know that for unrecognizable images limyo .00 S(I) = 1 —pZ, * depend-
ing on evaluation method and P] being the probability of randomly getting a
recognition result if the images are unrecognizable. In our case the probability
of a random correct guess is one in three for the original and one in three for
the encrypted version, thus picche = 53 = 0.11, compare Fig. 3. With the
typical number of observers being at the maximum in the hundreds the limit
will not be reached and we have to use a stochastic threshold.

We want to set a threshold T such that an image I with S(I) > T is con-
sidered unrecognizable and less than 5% of unrecognizable images should be
counted as recognizable.

The probability for an unrecognizable image U to have V recognizable deci-
sions, and a consequent score of S(U) = #zav is the number of possible vectors
of that form (cy) times the probability of such a vector (py ), with

cy = <#VO> ; (4)

pv =pL" (1 —p)#O V. (5)

The probability for no more than V' recognizable decisions, that is S(U) >

10



Table 1: Examples of the threshold (T"), the number of incorrect recognition decisions (V)
to reach T and the probability to reject an unrecognizable image as recognizable (P (V7)) at
that threshold are given for the experimental setup.

#O pi\-/IatchZ = 011
Vi P(Vr) T
50 9 9540 % 0.82

100 16 95.07 % 0.84
500 67 9524 % 0.87
1000 128 95.77 % 0.87

% can be calculated as
%4 v
#O rt T —1
PV =Y e = ( )t pryro— (6)
i=0 i=0

Now we can calculate the threshold 7', and corresponding Vi such that
P(Vr) > 0.95 (that is the chance that a non recognizable image is counted
as recognized by chance is less than 5%). Resulting example thresholds, and
according values for Vp and P(Vr) for varying #0O are shown in Table 1.

Note that this boundary is based on the probability for a random guess in
case the image is unrecognizable. This is because we do not have the probability
of a correct assessment for any other case, i.e., when some information is retained
in the image. This means that when we set the threshold to only miss 5% of
the images which are unrecognizable, without taking recognizable images into
account (due to unknown probability). Since there is an overlap this means that
the higher the P(Vr) the higher the (unknown) chance, and therefore number,
of images being categorized as unrecognizable which are recognizable.

8.2. Analysis of Forced Choice Subjective Experiment Data

8.2.1. Outlier Detection

Outlier detection is performed per session and per environment based on the
clustering technique and opinion difference expressed by Hamming distance as
described earlier. This is done since, due to data retention policy, anonymised
IDs from one set of experiments could not be linked to those from another.
The results of the outlier detection are given in Table 2, we give the number of
outliers as well as the intermediate values, p and o, (which give the distance
between pairwise observer results) and the resulting cut off threshold T

The experiments were not of the same difficulty, as exhibited by the mean
number of errors over all observers — for SPLIT1, this is 76.22 and for SPLIT?2 it
is 48.55. The dendrogram representations of the clustering are given in Figure 4.

Interestingly, we find that the difference between the two environments over-
all is small. Table 2 shows similar values for average and spread of scores, this
can also be seen from Fig. 5a and 5b which show a direct comparison of scores.

11



Table 2: Distribution of observer difference and resulting threshold 7" and number of outliers
for the experiments.

Setup  Testset s o T Outliers
CE  SPLIT1 34.74 6.72 54.89 8
SE SPLIT! 34.05 6.18 52.58 0
CE  SPLIT2 3736 850 62.85 0
SE SPLIT2 38.80 8.83 65.30 1
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Figure 4: Dendrograms of the hierarchical clustering, outlier branches are shown in red.
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Figure 5: Differences in the recognizability score from CE and SBG.a

When the threshold calculated from the more constrained environment is used
for outlier detection in the SBG datasets the same outliers are detected. So
a slightly less constrained environment seems to be perfectly fine for acquisi-
tion of data (which significantly reduces the efforts to conduct the subjective
recognition experiments).

The final recognition score S is calculated based on the averaged outlier
prune individual scores. However, we can also look at the scores per setup
to see the difference in the results between mostly computer scientists (SE)
and mostly non-computer scientists (CFE). The recognizability score per setup
is plotted as a scatter plot in Fig. 5a, the x-axis is the score from SE and the
y-axis from CE. If the two scores agree the data point will be on the prime
diagonal, the farther displaced from the diagonal the higher the disagreement
is. The difference in scores is capped, the points are all in a band around the
diagonal, which is a result from the outlier removal of course. What can not
be seen is the distribution of differences: A point is plotted in the scatter plot
if that particular combination occurs, no matter how often this is the case.
Figure 5b therefore gives a histogram of difference scores, in 31 bins. And here
we finally see that the disagreement becomes less frequent the stronger it is: In
terms of Fig. 5a this implies that data points with a higher distance from the
diagonal are less frequent observed.

3.2.2. Recognition Threshold

The calculation of the threshold is dependent on the number of observer
scores taken into account. From Table 2 we can see that SPLIT1 has a different
number of outliers than SPLIT?2 leading to a different threshold for each set of
tests. The matching protocol using 3 original and 3 distorted images has the
probability of randomly selecting the correct pair of py atene = 0.11, leading
to the thresholds: T = 0.821 for #0 = 67 (SPLIT1 containing fake, j2k and
j2kne) and T = 0.824 for #0O = 74 (SPLIT2 containing jzr, jpg and H.265).
This was calculated following the method outlined earlier.

Figure 6 gives examples for each encryption type just below and just above
the threshold, the same base image was used in each row. It should be noted that
the recognizability scores are not really distributed equally, rather most images

13
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Figure 6: Example images which are just below and just above the recognition threshold.
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(a) Grouping by encryption type. (b) Grouping by image.

Figure 8: Images are split by encryption type or reference image, sorted based on the recog-
nition score and plotted.

are clearly recognizable or clearly non-recognizable. A few images have scores
in the middle range, where observers are split between recognition and non-
recognition. However, there are only few images with these middle-range scores
and most images can clearly be classified. A histogram of the recognizability
scores is plotted in Fig. 7. The thresholds for both sets are given as well, the
difference is rather small even given the difference in outliers.

8.8. Range of Recognition Scores

The database contains images with a recognition score and a classification,
based on the threshold, into recognizable and non-recognizable.

The intent when setting the distortion steps was to produce a set of encrypted
images which span the range from clearly recognizable to clearly unrecognizable
for each reference image.

If we have met our goal according to the judgment by human observers can
be seen in Fig. 8. The figure contains two subplots with different groupings,
one by encryption type and one by source image. The images are sorted based
on the recognition score with every point on the x-axis being one image. The
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threshold is given as the maximum of SPLITI1 and SPLIT2 thresholds. The
goal was to create a spread of images (for each encryption type and source
image) which span the range from recognizable to non-recognizable. Looking at
the figure, we have achieved this goal. Both sub graphs show that the respective
grouping has images over the threshold, that is for each distortion type we span
the range and likewise for each source image we have results from recognizable
to non-recognizable.

These graphs also confirm findings from before and illustrate them nicely.
The first is that the score mostly falls into the broad categories of ’clearly rec-
ognizable’, i.e. a score below 0.1, or 'not recognizable’, i.e. at or above the
threshold. This is reflected by the steep incline in the figures, i.e. very few im-
ages actually have a score between these two extremes. The other confirmation
is that SPLIT1, specifically j2k, j2kne and fake, are more difficult to assess,
presumably due to the encryption artifacts being more disruptive to the human
visual system. We assumed this to be based on the larger o during outlier cal-
culation, reflecting observer disagreement. In Fig. 8a it can be seen that these
encryption types have a larger number of images over the threshold. Here we
have more results of 'random’ selection during the Match2 protocol, leading to
a higher disagreement between observers, i.e. they did not guess alike, which
was the design goal of the Match2 protocol.

4. Experiments on Exemplary Usage of the Database

4.1. Methods for Assessment of Visual Recognition Index Candidates

The utilization of human observers for evaluation of recognizability is typi-
cally inpractical in real applications, so the employment of a visual recognition
index (VRI) is highly desirable. To evaluate potential VRIs, a common set of
methods is equaly desirable.

There are two tools which are conceivable for the purpose of separating rec-
ognizable and non-recognizable images. One is a simple classification method,
the other is a score based system. The score based system can either produce a
recognizability score and a non-recognizability threshold or it gives a classifica-
tion and a certainty score. For evaluation purposes these two are the same and
can be dealt with in the same way.

The use of evaluation methods for classification techniques lends itself to
the task, which are based on true and false positives and negatives, respectively.
We denote recognizable images as positive since they need to be corrected to be
unrecognizable in an encryption system.

While the system can always be tuned to not produce false negatives, by
rating everything as positives, this has to be counteracted in a measure by
also taking into account the false positive rate. An additional problem is the
unbalanced number of recognizable and unrecognizable images. A good match,
cf. [25], for the described circumstances is Matthews correlation coefficient
(MCC) [23] which is related to the chi-squared statistic for the contingency
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table.
MCC X72: tp X tn — fp X fn (7)
n \/(tp + fp)(tp + fr)(tn + fp)(tn + fn)’

with tp, fp, tn, fn being true positives, false positive, true negative and false
negative respectively.

For score and threshold based methods the same, as for the classification
methods, holds true when it comes to the classification end result. However,
since the threshold can be set, the resulting classification can be steered. To
properly reflect this the minimum MCC over all thresholds should be used when
evaluating a score based methods, to facilitate comparison with purely classifi-
cation based methods.

Otherwise, common operating points on the receiver operating characteristic
(ROC) curve based on the full database should be used. T'wo points on the ROC
curve make sense: 1) the equal error rate, because it makes different methods
comparable by computing bounds for the significant difference without needing
the exact experimental results [9]; and 2) the false positive rate at zero false
negative rate (OFNR), which is basically the desired output of the system, i.e.
no false negatives means no breach in security.

In addition to the classification accuracy provided by the MCC a more direct
comparison of the scores from human observers and algorithms can be taken
into account. Given that the Human Visual System (HVS) is non-linear and
the evaluation tool is not required to be, a non-linear correspondence measure
should be used, usually the Spearman rank order correlation [33] or the Kendall
7 [20]. Both are well known and widely used, to stay in tune with [10] we will
use the Spearman rank order correlation (SROC).

SROC = <V (r9(@),r9(W)) (8)

Org(z)9rg(y)

where rg(z) : R — N is a function returning the rank of the argument, cov
is the covariance and ¢ is the standard deviation. There is a slight problem
with the massing of ’0’ scores, i.e., very clearly recognizable images (see Fig. 7),
which might mess with the correlation. To prevent any problems it is sug-
gested to remove any images which are obviously recognizable, scores close to 0,
from the comparison. Considering potential operator errors we assume an error
rate of no more than 10% which would exclude images with recognition scores
S(I) < 0.1. Reporting this SROCyy, spanning 90% of the recognition scores, is
preferable over the full SROC. In addition to the previously discussed scores for
the recognition task we will also give the Pearson correlation (r), a type of linear
correlation which is like the SROC without the rank function (r := M),

OL0y

and the root-mean-square error (RMSE) as suggested by [41].

4.2. Visual Quality Indices and Recognition

There are currently no visual recognition indices as far as the authors are
aware. However, visual quality indices (VQIs) have been frequently used for
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visual security analysis, although it is known that they are not well suited
for the task [10]. According to [11] the best suited VQIs for security analysis
are the VIF and LEG, the most widely used are the PSNR and the SSIM. In
the following we will briefly describe the VQIs and evaluate their usefulness as
VRI based on the method outlined in the previous section using the database
introduced.

Local Edge Gradients (LEG) The LEG [8] analyses changes in luminance
and edge information. The main part is the edge score which combines the edge
change between images, based on the local binary pattern concept, and an edge
gradient change score between images. The edge change is calculated in the low
frequency band and the gradient change in the high frequency band of a wavelet
decomposition of the image. The LEG is a quality metric, a high metric score
reflects a high quality, with a normalized score in [0, 1].

Peak Signal to Noise Ratio (PSNR) The peak signal-to-noise ratio
(PSNR) is still widely used because it is unrivaled in speed and ease of use. The
PSNR is a quality metric, meaning a high metric score reflects a high quality,
which gives a score in the range [0, 0o]. However, it is also well known that the
correlation to human judgment is somewhat lacking even for high and medium
quality [13].

Structural Similarity Index Measure (SSIM) The structural similarity
index measure (SSIM) [42] extracts three separate scores from the image and
combines them into the final score. First the visual influence is calculated locally
then luminance, contrast and structural scores are calculated globally. These
separate scores are then combined with equal weight to form the SSIM score.
The SSIM is a quality metric, a high metric score reflects a high quality, which
gives a score in the range [0, 1].

Visual Information Fidelity (VIF) For the VIF, [30], a refined model is
used which starts with the modeling of the reference image using natural scene
statistics (NSS). Furthermore, the possible distortion is modeled as signal gain
and additive noise in the wavelet domain. Parts of the HVS which have not
been covered by the NSS are modeled, i.e. internal neural noise is modeled by
using an additive white Gaussian noise model. Using this model the VIF score
reflects the fraction of the reference image information which can be extracted
from the impaired image.

4.2.1. Evaluation of VQIs

Table 3 gives the resulting scores of the assessment techniques as discussed
earlier. Since the VQIs produce a numerical score a threshold is required for
the classification, thus we only reported the MCC at the threshold with the
minimum MCC.

None of the tested VQIs offers acceptable performance for a recognizability
application. This was indeed expected, as the VQIs are commonly designed
to detect small signal differences located onto (or nearby) edges. The encryp-
tion, c.f. Fig. 6, destroys content efficiently, as it significantly damages the low
frequency content, and introduces a large amount of high frequency noise.
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Table 3: Evaluation of different VQIs on the database, reporting the equal error rate, false
positive rate for zero false negatives, the maximum absolute Matthews correlation coefficient,
the absolute Spearman rank order correlation, the root mean squared error, and the Pearson
correlation for the full database as well as per encryption type.

(a) LEG
Testset EER [%] OFNR[%] |[MCC| [[SROCg| RMSE r
all 28.62 100.00 0.373 0.267 0.730 0.359
ipg 17.64 100.00 0.427 0.180 0.766 0.383
jxr 16.46 100.00 0.537 0.388 0.733 0.487
265 28.36 85.71 0.369 0.192 0.688 0.206
j2k 16.77 70.00 0.667 0.505 0.718 0.474
j2kne 17.19 73.91 0.715 0.404 0.720 0.504
fake 12.91 81.82 0.592 0.513 0.750 0.483
(b) PSNR
Testset EER [%] OFNR[%] |[MCC| |ISROCgo|| RMSE r
all 20.83 100.00 0.508 0.385 10.936 0.464
jpg 9.96 100.00 0.515 0.296 13.228 0.534
jxr 17.92 100.00 0.531 0.334 11.176 0.561
265 42.65 100.00 0.246 0.074 10.569 0.133
j2k 11.44 90.00 0.710 0.413 10.501 0.543
j2kne 12.10 82.61 0.774 0.416 10.511 0.547
fake 26.90 100.00 0.319 0.115 9.232 0.423
(c) SSIM
Testset EER [%] OFNR[%] |MCCJ ||SROCg| RMSE r
all 29.17 98.61 0.375 0.321 0.722 0.288
irg 6.24 100.00 0.781 0.520 0.820 0.336
jxr 7.92 83.33 0.608 0.557 0.662 0.503
265 44.33 100.00 0.246 0.099 0.512 0.266
j2k 34.72 90.00 0.320 0.085 0.804 0.337
j2kne 23.61 100.00 0.474 0.096 0.806 0.337
fake 11.60 72.73 0.654 0.604 0.677 0.538
(d) VIF
Testset EER [%] OFNR[%] |IMCC| |[SROCg| RMSE r
all 18.51 95.83 0.460 0.304 0.832 0.326
jpg 19.71 100.00 0.290 0.102 0.900 0.359
jxr 16.46 50.00 0.698 0.462 0.857 0.323
265 14.08 57.14 0.644 0.660 0.829 0.448
j2k 19.67 95.00 0.545 0.277 0.817 0.410
j2kne 20.82 100.00 0.620 0.346 0.818 0.405
fake 20.49 72.73 0.570 0.387 0.767 0.445
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VQIs are either purely statistical (such as the PSNR or MSE), and can easily
be fooled by a high extent of noise in the images such as the one we encounter in
this work, or are more advanced (VIF and LEG) and model the HVS behavior,
and look for perceivable contrast modifications (i.e. nearby the images edges).
Typically, advanced VQIs employ the Contrast Sensitivity Function (CSF) in
order to represent the images as contrast gaps. The contour areas are thus
presenting higher weights to be pooled into a single quality score. For the images
composing this database, we have either high frequency (and high amplitude)
noise on top of the image, or some large image areas being wiped out. An
advanced HVS based VQI can simply not interpret the huge quantity of high
contrast areas that occur in the distorted image and do not match with any
existing contrast within the original image.

The recognition task is very different from a quality assessment or even from
a visibility threshold detection task. For image recognition, an observer only
needs to find a match between small portions of the images to recognize the
content. The problem at hand is more similar to template matching than to
quality assessment. Therefore, we will look at two more propositions: I) The
task at hand is more like template matching and/or based on coarse structures
of the image and II) the features of the VQIs are good but their combination
(that is the way they are weighted) is bad. First (I) we will look at a template
matching and structure based segmentation approach. Second (II) we will try to
use the VQI scores on different resolutions and learn a scaleable vector regression
model to see if the results can be improved.

4.2.2. Structure as Recognition Indicator

We use the 2D Normalized Cross-Correlation [21] as an estimate of the rec-
ognizability between the original and distorted images.

Normalized Cross-Correlation (NCC) Putting the human vision sys-
tem perspective aside, we can see an image pair as two signals which may have
some similarities. A common tool for evaluating the degree of similarity between
two signals is the Cross-Correlation, which is basically a sliding dot product.
The Normalized Cross-Correlation (NCC), being less sensitive to linear changes
in the images amplitude has proved its efficiency in pattern recognition appli-
cations.

To illustrate the advantage of a structure based approach, using the NCC
as an example can be illustrated with the images in Fig. 9 where the same
jpg encryption method is applied on two different input images. The left pair
of images is not recognized by the observers (score=0.892), whereas the right
pair is much more easily recognized (score=0.311). Because it is a smooth dark
area, the large shadow area under the pontoon leads to an uneven scrambling by
the encryption, and thus, the encrypted content still exhibits the shape of the
shadow area making it recognizable to a human observer. For both of the lower
panel images in Fig. 9, VQIs will estimate that both test images are of poor
quality, but won’t find any similarities, whereas the NCC might be able to find a
matching pattern. Metrics scores are provided beneath the images, however, all
four metrics are unable to differentiate both images in terms of recognizability

20



0.892 Recognition Score 0.311

0.113 LEG 0.085
9.912 PSNR 9.296
0.020 SSIM 0.021
0.015 VIF 0.017
0.120 NCC 0.475

Figure 9: An example of increased recognizability rate due to some particular image properties.

providing highly similar values, whereas the NCC reaches respectively 0.120 and
0.475, thus clearly differentiating the two cases.

Table 4 gives the results of the NCC metric for the entire database and split
by test set. Except for two SEnc methods (jzr and 265) the metric performs
well, and seems able to better differentiate recognizability scores. The improve-
ments over the standard VQIs is illustrated in Fig. 10, which also shows the poor
performance of all metrics on the 265 and jzr test sets. The weak performance
on the data of these two encryption methods can be explained by the cascaded
distortion induced by them, which erases large uniform portions of the image. It
is difficult for a correlation based metric to cope with such large smooth image
patches. A block-based correlation, followed by a pooling of local scores, might
help to improve the predictions in such a framework.

4.2.8. Learning the Recognition Threshold

We do not intend to create a (new) recognition index in this section. Rather,
we are interested in whether applying machine learning can improve on the VQIs
given above. We directly use the VQI scores on two resolution levels as feature
input for a support vector machine (SVM) with a radial basis function. We
try to learn a regression model (basically building a new VQI based on the old
VQIs). If machine learning can improve the rates above (Table 3) substantially,
then this is a clear indication that the features used in classical quality indices
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Table 4: Evaluation of structural VQIs on the database, same parameters as in Table 3, for
the full database as well as per encryption type.

(a) NCC
Testset EER [%] OFNR[%] |[MCC| [|[SROCg| RMSE r
all 12.28 100.00 0.574 0.554 0.342 0.695
jpg 5.83 80.00 0.838 0.866 0.138 0.917
jxXr 20.83 100.00 0.356 0.164 0.468 0.545
265 42.65 100.00 0.177 0.112 0.607 0.317
j2k 10.02 90.00 0.813 0.418 0.206 0.920
j2kne 5.69 95.65 0.884 0.516 0.197 0.925
fake 6.94 100.00 0.819 0.854 0.126  0.934
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Figure 10: Pearson (left), and Spearman (right) correlations between 5 tested metrics and the
observers’ recognition rates for each encryption method (from Tables 3 and 4).
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can be used for recognition tasks but the valuation of features needs to be
reassessed.

We split the database into non-overlapping sets, based on reference images.
One set is removed and all others are used for training, then the removed set is
evaluated. This is done once per set, in essence building a classification for the
whole database by proceeding set by set. The final classification will then be
evaluated as given above. The input for the learning will be the output of the
LEG, PSNR, SSIM and VIF at two resolution steps, once with full resolution
and once downsampled by two. The downsampling should remove some of the
noise while keeping larger structures relatively unscathed. As a fitness function
we used the OFNR, EER, MCC and SROC in turn.

The results can be seen in Table 5, split by fitness function (‘Target’ in the
table). From the results it would seem that the regular metric scores are an ill
fit for the recognition task. While this combination of VQI scores is certainly
better than each VQI individually, the results are still very bad, especially for
the typical use-case of OFNR. The fact that even the SVM has difficulty fitting
the VQI score to the recognition data can clearly be seen from examples such as
the false positive rate still being at 100% for 0% false negative rate even when
optimizing for the OFNR (jpg, 265). We knew already that the correlation of
the VQIs with the recognition data was low (from Table 3), but now we can
also see that lifting it to a higher dimension and fitting with an SVM also does
not yield much of an improvement.

This indicates that quality and recognition are indeed fundamentally differ-
ent tasks and that tools which do well on one (quality) are ill suited on the other
(recognition).

5. Discussion and Conclusion

As no standardization committee (ITU, VQEG or ETSI) has yet proposed
any recommendation to cope with either subjective protocols or objective met-
rics in the context of image recognition, we hereby provide some suggestions
and insights on a way to manage a full recognizability assessment (for both the
subjective and objective viewpoints). Our recommendations will be structured
along three distinct points. At first, we give some comments on the acquisition
environment itself, then, we issue recommendations on a possible management
of the subjective data and we finally give advice on the proper use of Visual
Quality Indices.

5.1. Recommendation for the Acquisition Environment

So far, we have seen little difference between results from the different ac-
quisition environments (and different observer pools). To further test this we
can formulate the following Zero-Hypothesis (Hp): There is one underlying (un-
known) distribution of observer scores and the results from acquisitions in CE
and SFE are drawings from this underlying distribution.
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Table 5: Evaluation of the scalable vector regression learning with an SVM based on LEG,
PSNR, SSIM and VIF on two resolution scales. The different learning targets are also given.

(a) Scalable vector regression (SVR).

Target Testset EER [%] OFNR[%] —MCC— —SROCgp— RMSE r

OFNR  all 9.74 77.78 0.647 0.675 0.168 0.837
OFNR jpg 9.55  100.00  0.533 0.331 0.145 0.803
OFNR jxr 5.42 83.33 0.806 0.725 0.142 0.817
OFNR 265 20.38  100.00  0.505 0.564 0.200 0.691
OFNR j2k 12.38  65.00 0.729 0.627 0.169 0.881
OFNR  j2kne 9.80 60.87 0.793 0.510 0.168 0.889
OFNR fake 1583 90.91 0.602 0.540 0.177 0.851
EER all 830  100.00  0.673 0.678 0.259 0.678
EER jpg 9.55  100.00  0.533 0.349 0.519 0.278
EER  jxr 6.67  100.00  0.759 0.686 0.137 0.849
EER 265 1324 85.71 0.697 0.708 0.181 0.757
EER j2k 12.38  85.00 0.703 0.561 0.170 0.878
EER  j2kne 8.83 65.22 0.845 0.465 0.164 0.895
EER fake 1291 90.91 0.661 0.532 0.160 0.869
MCC  all 10.11  100.00  0.697 0.627 0.205 0.758
MCC  jpg 9.13  100.00  0.553 0.311 0.140 0.806
MCC  jxr 6.25  100.00  0.723 0.630 0.304 0.644
MCC 265 14.08  85.71 0.532 0.358 0.224 0.631
MCC  j2k 9.95 80.00 0.745 0.667 0.172  0.869
MCC  j2kne 5.69 52.17 0.884 0.497 0.173  0.876
MCC  fake 1117 90.91 0.666 0.613 0.177 0.832
SROC all 9.72  100.00  0.632 0.717 0.434 0.527
SROC jpg 1764 100.00  0.419 0.381 0.846 0.114
SROC jxr 5.42 83.33 0.806 0.800 0.176 0.781
SROC 265 14.08  100.00  0.487 0.751 0.533  0.546
SROC j2k 9.48 95.00 0.743 0.596 0.171 0.886
SROC j2kne 6.17 73.91 0.845 0.469 0.172 0.893
SROC fake 8.68 72.73 0.741 0.722 0.201 0.815
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The way to evaluate this hypothesis is the 2-sample Kolmogorov-Smirnov
(KS) test, [22], resulting in a KS statistics of 0.041 which corresponds to a
p-value of 0.54 or 54%. This is clearly not enough to reject Hy.

However, so far we have not found any evidence of difference, which should
not be taken as an evidence for the absence of differences.

Still, the conclusion at this point, and without evidence of the contrary, has
to be that there is little to no difference between CFE and SE. This would suggest
that there is no real benefit of the CF over SE environment and we therefore
conclude that the use of an uncontrolled environment is acceptable,
if it is needed to keep setup cost and time consumption low.

5.2. On the number of human observers

When running a subjective experiment, besides the protocol itself, one cru-
cial factor that may influence the analysis of the output subjective data is the
number of observers. Most reports recommend to enroll at least 15 observers
[14, 38]

As explained in [38]: “The possible number of subjects in a viewing test
(...) is from 4 to 40. Four is the absolute minimum for statistical reasons, while
there is rarely any point in going beyond 40 (...) In general, at least 15 observers
should participate in the experiment.”

The ITU or VQEG recommendations have been issued for quality assessment
tasks not for recognition threshold tracking. The main difference is that for
quality evaluation each observer gives a score, while for recognition only a binary
decision is recorded. These binary decisions are fused into a final score. This
changes the influence of a single observer significantly and likely requires a higher
minimum number of observers than recommended for quality assessment.
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Figure 11: Impact of the size of the panel of observers on the subjective dataset.

In order to test the impact of the number of observers, we consider that
the valid observers (after the dendrogram clustering step) represent the ground
truth, i.e., a reasonable estimation of the recognizability rate. From this retained
set of observers we randomly selected several subsets of observers in order to
generate reduced panels of assessors. We chose these reduced panels to comprise
between 5 and 32 observers. For each panel size, we randomly generate 100
subsets, i.e., we repeated the test 100 times. For each of the so-obtained subset,
we compute both the Pearson correlation and RMSE with the full subjective
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dataset (#0O = 67 for SPLIT1 and #0O = 74 for SPLIT?2). The result is shown
in Figure 11.

As can be seen in this Figure, there is a reasonably small variability among
the 100 subsets of observers (100 gray lines). The fewer observers are enrolled,
the more the recognizability drifts away from the ground truth. Even though
all tested observers are considered wvalid, as given after the clustering stage
(Fig. 4), the obtained recognizability rate when the panel is only constituted of
5 observers is quite remote from what we found to be the ’ground truth’.

Clearly the minimum number of 4 observers recommended by the ITU is
far too low, and the spread of possible outcomes also varies more strongly. It
is difficult to form an authoritative recommendation from this evaluation alone
besides: Use as many observers as you can. By keeping in tone with the ITU
however we will also recommend to use no less than 15 observers after
outlier detection. Optimally, at least double that number should be
used.

5.8. Proper use of Visual Quality Indices

When there is a need to prove either quality (for coding applications), invisi-
bility (in a data hiding scenario), or unrecognizability (in a Selective Encryption
framework), most authors turn to Visual Quality Indices that are available in
the literature. They apply some state of the art metrics and based on the pre-
dicted scores, they eventually compare the performances of their method against
some competing techniques. However, the chosen VQI(s) might not be adapted
to the tested artefacts, and may not reflect well the human judgement.

The poor overall performance of VQIs only leaves one general conclusion:
VQIs must not be used to evaluate the recognizability of images. To
qualify this statement: This is a general statement. There might well be a VQI
which fits a specific encryption method, but this has to be validated and can
not be assumed.

This is not surprising since the VQIs were not built with recognizability in
mind, and any reasonable performance in this respect would have been inciden-
tal. This finding still leaves the community without a proper recognizability
indicator. However, employing the NCC as an example for structural
similarity, we have shown that recognition indicators can be designed,
but further refinement is still open research.

Researchers usually opt for using VQIs because of time and monetary cost
imposed by the setup of a subjective experiment. We have shown in this work
that for a recognizability task, the setup can be significantly lightened, compared
to quality assessment or visibility threshold tracking.

If researchers continue to use a VQI for assessing visual recogniz-
ability, the onus to prove fitness of the VQI for the task is on them.
They might try to ascertain the ability of the VQI to cope with a specific dataset
by evaluating it on a limited subset. Indeed, we can not prove there is not a
VQI which, for a specific test set, conforms well to human judgment. There is
however a pitfall in such a limited subset test as we will briefly outline.

26



: IPSNR SSIM VIF NCC
756 images 288 images 168 images 72 images

fake fake fake fake

S
Jpg

h265 h265 h265 h265

Figure 12: Pearson Correlations between four VQIs and 15 observers for various dataset
dimensions

In order to study the feasibility of running a small experiment, and test a
few metrics, we have decided to split the whole subjective database into subsets
of fewer observers, and most importantly fewer test images. As explained in
section 2.1, the full database is composed of 14 images, 6 SEnc methods and 9
SEnc parameters, it is thus composed of 756 test images. Overall 150 observers
were enrolled to determine the recognizability of these 756 images (90 under CE
conditions, and 60 under SE viewing conditions). From this database, we have
derived 3 smaller subsets:

e 12 images, 6 SEnc methods, 4 SEnc parameters, thus composing a data
set with 288 test images.

e 7 images, 6 SEnc methods, 4 SEnc parameters to make a data set with
168 images.

e 3 images, 6 SEnc methods, 4 SEnc parameters, leading to a data set of 72
images.

For each of these reduced data sets, we ran four of the previously tested
VQIs. The objective is to ascertain that the best performing metric can be easily
determined from a reasonably small subjective data set. Figure 12 shows, as a
radar plot, the Pearson correlations between 15 randomly selected observers and
four selected VQIs. We present the correlations values for the full size database
(756 images) as well as for the 3 reduced versions. It can be observed that
among the 4 tested metrics, the VQIs ranking seem to be globally preserved.
However, the predicted scores from most VQIs seem to increase when the data
set dimensions decreases. In our example this is particularly true for the VIF
metric which appears to provide misleading predictions on the smaller data sets
for the 265 SEnc method. The lesson learnt from these results is that a subset
can be used to evaluate the best VQI out of a set, but the performance on a
subset should not be taken as indicative of the performance over a larger set.
The last recommendation therefore has to be that it is possible to
use a subset test for VQIs, but the results have to be considered with
extreme caution. While the test will correctly show the rankings among
the VQIs, i.e., the best VQI for the subset can be found, but the resulting
performance is not indicative of the performance over the full set.
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5.4. A Dataset for the Development of Recognition Indices

While we were not successful in creating a new recognition index (this was
also not the aim of this work), we have shown that objective metrics based on
the dataset we collected, and subsequently share with the research community,
already show an improvement over existing VQIs. The dataset will be provided
to the research community with the purpose of facilitating further research and
the development of recognition indices.

Finally, in case of unseen encryption types, we have provided guidelines on
the acquisition environment and number of participants as well as the setup of
the experiment to facilitate extension of the dataset in a meaningful way.
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