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ABSTRACT

Accurate localization of the Circle of Willis (CoW) is
essential for automated cerebrovascular analysis. However,
existing approaches often rely on fixed metadata and struggle
when parts of the vessels are not fully visible. We propose
a landmark-based ROI localization method that detects key
bifurcations and applies learned spatial margins to automati-
cally crop subject-specific ROIs. To achieve full coverage of
the CoW, missing bifurcations are estimated using anatom-
ical symmetry or spatial offsets.The method achieved accu-
rate vessel localization and preserved connectivity on two
datasets: TopCoW (clDice 0.88, BettiO 0.17) and Lausanne
(cIDice 0.82, Betti0 0.15). By comparing our approach with
the nn-Detection ROI localization, our method provides a
more accurate and stable ROI localization. The approach is
generalizable and independent of explicit ROI metadata.

Index Terms— Circle of Willis, ROI localization, land-
mark detection, MRA, cerebrovascular imaging

1. INTRODUCTION

The circle of Willis (CoW) is a critical cerebral arterial net-
work located at the base of the brain that ensures collateral
blood flow between the anterior and posterior cerebral cir-
culation [1]. Accurate segmentation and analysis of this
structure play a major role in cerebrovascular disease studies
like Intracranial aneurysms (ICAs) [2]. However, automated
CoW segmentation remains challenging due to anatomical
variability, small vessel size, and limited field-of-view in
angiographic acquisitions.

Recent advances in deep learning have enabled notable
progress in vascular segmentation, yet region-of-interest
(ROI) localization remains a critical bottleneck. Several
automated methods have been proposed for extracting the
Circle of Willis (CoW) prior to segmentation. For example,
the eICAB pipeline [3] uses atlas registration and a fixed
spherical ROI, followed by extraction of a 90x90x90 voxel
patch around the center of mass to standardize network in-
put. TopCoW Challenge strategies define adaptive bounding
boxes based on the spatial distribution of vessel voxels [4].

Anatomy-aware frameworks incorporating graph represen-
tations infer cerebrovascular network topology and handle
missing arteries using connectivity and structural priors [5].
Beyond cerebrovascular imaging, general ROI localization
networks combining detection and segmentation have also
improved localization accuracy [6]. Despite these advances,
most methods still depend on complete anatomy, accurate
prior segmentation, or fixed spatial assumptions, limiting
their robustness across variable acquisitions and incomplete
vascular configurations.

To overcome these limitations, we propose a landmark-
based ROI localization method that adapts dynamically to
each subject. The approach first detects the main bifurcations
of the CoW using a landmark detection model (Nader et al.,
2025). We then compute the average spatial margins between
bifurcations and ground-truth ROIs across training subjects,
and apply these learned margins to new test images. This
allows us to automatically crop an ROI centered on the pre-
dicted bifurcations. In cases where one or more bifurcations
are missing, their locations are estimated using the positions
of existing landmarks—either by leveraging anatomical sym-
metry (e.g., estimating the right MCA from the left) or by ap-
plying predefined spatial offsets between related bifurcations
(such as between the basilar—-PCA and ACA-ACOM). This
design makes the ROI estimation both adaptive and robust to
incomplete detections, ensuring full coverage of the Circle of
Willis even in challenging or asymmetric cases.

2. MATERIAL AND METHODS

2.1. Dataset

For this study, we used the 125 MRA scans released by the
TopCoW challenge [7], which includes patients admitted to
the Stroke Center at the University Hospital Zurich (USZ) be-
tween 2018 and 2019. Although the topCoW dataset contains
both MRA and CTA scans, we only used MRA data. The im-
ages were acquired on multiple Siemens scanners (1.5T and
3T) in different hospitals in Switzerland, anonymized, and
cropped to include only the brain region.

For evaluation, we used two independent datasets to test
the robustness of our method. The first set included 17 MRA



cases from TopCoW, held out from training. The second set
comprised 20 MRA images from the OpenNeuro Lausanne
TOF-MRA Aneurysm Cohort [8]. The ground truth ROIs
for both datasets were provided, allowing for quantitative
evaluation. These datasets enabled comprehensive testing
of our ROI localization approach across different imaging
conditions and anatomical variations.

2.2. Landmark Detection

Based on the approach proposed by Nader et al. [9], CoW
bifurcations are detected using a two-step landmark predic-
tion framework. In the first step, approximate landmark re-
gions are identified using nn-Detection [10]. In the second
step, the precise coordinates of each bifurcation within these
regions are predicted using an encoder—decoder network that
performs heatmap regression. This two-stage design ensures
accurate and robust localization of key bifurcations, which we
then use as reference points for our adaptive ROI extraction.

The landmark detection algorithm identifies key bifur-
cation points (Fig. 1) including the anterior cerebral artery
(ACA), anterior communicating artery (ACOM), middle cere-
bral artery (MCA), internal carotid artery (ICA), posterior
cerebral artery (PCA), and basilar artery (BA). We chose
these seven major bifurcations among others because they lie
close to the edges of the ROI, which make them ideal refer-
ence points for defining its boundaries. Using their predicted
3D coordinates, we can adaptively crop the ROI to capture
the relevant vascular segments around each bifurcation.

Fig. 1. The Circle of Willis geometry and corresponding bi-
furcation landmarks as predicted by the automated detection
model.

2.3. ROI Estimation & Cropping

To define the optimal cropping region around the Circle of
Willis, we first measured the distances between each bifurca-
tion and the edges of its annotated ROI in all six spatial di-
rections (+z, £y, £2) across all training images. These dis-
tances capture how far each bifurcation typically lies from the
ROI boundaries. We then averaged these distances across all
108 training images to compute a set of learned margins, rep-
resenting the typical anatomical extent of the Circle of Willis.

During inference, the predicted bifurcations for a new im-
age are used to generate an initial ROI. The learned margins
are then added to this ROI in each direction to slightly enlarge
the box, ensuring that all arteries are fully captured. The fi-
nal ROI is therefore the smallest 3D region that encloses all
detected bifurcations, extended by the learned margins (Fig.
2-b). This approach allows automatic, subject-specific crop-
ping while preserving the full vascular structure.

2.3.1. Handling missing bifurcations

In instances where certain bifurcations were not detected
by the landmark model, we employed estimation strategies
based on anatomical symmetry and learned spatial relation-
ships. For lateral bifurcations (e.g., right or left MCA), miss-
ing landmarks were mirrored across the mid-sagittal plane
using the contralateral coordinates. For bifurcation 13, which
connects the BA to the PCAs, we first attempted to estimate
its position using learned offsets from other landmarks (1
or 2, corresponding to the ACA-ACOM connections) (Fig.
1). If no learned offset was available, a fallback mirroring
along the head—foot (z) axis was applied. These procedures
ensured that all key bifurcations required for ROI cropping
were available.

2.4. Evaluation Metrics

The proposed ROI prediction approach was evaluated using
geometric and topological metrics. The centerline Dice coef-
ficient (clDice) measured the overlap between predicted and
reference vessel centerlines, while the BettiO error quantified
differences in the number of connected components. Evalua-
tion was performed by comparing predicted ROIs with man-
ual annotations, and reported values represent the average
performance across all test cases in each dataset.

3. ROI PREDICTION RESULTS

The proposed ROI prediction approach demonstrated robust
and consistent performance across datasets. On the TopCoW
data, the model achieved an average clDice of 0.88, indicating
excellent alignment between the predicted and reference cen-
terlines, and an average BettiO error of 0.17, confirming that
the vascular connectivity was well preserved. Similarly, on
the Lausanne dataset, the method achieved an average clDice
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Fig. 2. Overview of the ROI prediction process. (a) Example of an MRA image with bifurcations automatically detected using
the landmark detection model. (b) ROI estimation obtained by applying the calculated margin around the detected bifurcations,
shown as red bounding boxes. (c) Final cropped ROI, defined as the smallest 3D region enclosing all detected bifurcations.

of 0.82 and an average BettiO error of 0.15, showing that the
model maintained accurate vessel localization and preserved
the overall vascular topology despite anatomical variability
and differences in image acquisition. These results highlight
the robustness and generalizability of the proposed ROI pre-
diction strategy for automatic Circle of Willis localization,
even in the absence of explicit metadata on ROI position or
size.

Our method was compared with an ROI localization ap-
proach based on nn-Detection, which was used by one of the
top-performing teams in the TopCoW challenge [7]. To eval-
uate accuracy, we measured the distances between the pre-
dicted center-of-mass (CoM) and the ground truth (GT) for
17 cases. For reference, we also computed the CoM distances
using the nn-Detection approach. The results are summarized
in Figure 3. As shown in the plot, the distances between
the GT CoM and our predicted CoM are consistently smaller
than those obtained with nn-Detection. Across all cases, our
method remains within a tight range of approximately 0.9 to
4.6 mm (mean ~ 2.4 mm), indicating high spatial precision
and stable localization of the ROIL.

In contrast, nn-Detection exhibits much larger errors, with
distances spanning from about 5 mm up to nearly 38 mm
(mean ~ 17.3 mm). This variability reflects a reduced robust-
ness, particularly in challenging cases where the GT position
varies or vessels are only partially visible. Overall, our ap-
proach provides a markedly more accurate and reliable CoM
estimation than nn-Detection. Similar performance was ob-
tained on the Lausanne dataset.

Moreover,our method using landmark detection is consid-
erably faster than the nnDetection apporach. This is expected
because nnDetection requires a full 3D convolutional network
pass over the entire volume, which is computationally inten-
sive, whereas our approach directly predicts key bifurcation

Distances Between GT CoM and Predicted ROl CoM:
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Fig. 3. Comparison of ROI center-of-mass distances. The plot
shows the distances between the ground truth (GT) center of
mass and the predicted ROI CoM for both our method and the
nn-Detection approach on the TopCoW test set.

points, reducing the amount of data processed and the com-
plexity of inference.

3.1. Qualitative Evaluation

We conducted a qualitative evaluation to illustrate the per-
formance of the ROI prediction and bifurcation estimation
process (Fig.4). In a TopCoW case, the landmark detection
model initially missed bifurcations 1 and 2, located between
the ACA and ACoM on the right and left hemispheres, while
detecting the other bifurcations (shown in orange). Using the
average spatial offsets computed from the training data, the
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Fig. 4. Qualitative evaluation of ROI prediction and bifurcation estimation. Top row : TopCoW case. First image : all detected
bifurcations in orange, with bifurcations 1 and 2 missing. Second image : missing bifurcations 1 and 2 estimated in blue using
average offsets from the training set, alongside previously detected ones. Third image : final ROI capturing all CoW arteries.
Bottom row : Lausanne case 16. First image : detected bifurcations in orange, with bifurcation 3 missing. Second image :
bifurcation 3 estimated in blue using anatomical symmetry from bifurcation 4. Third image : final ROI including all relevant

arteries.

model successfully estimated the missing bifurcations (shown
in blue), allowing the definition of a final ROI that captured
all major CoW arteries. In a Lausanne case (case 16), bifur-
cation 3, situated between the right ICA and the right MCA,
was initially missed. Its location was estimated using anatom-
ical symmetry from bifurcation 4, producing a complete bi-
furcation prediction (blue) and a final ROI that encompassed
the entire CoW. These examples demonstrate that the pro-
posed approach can reliably handle incomplete detections,
adaptively estimating missing bifurcations to ensure robust
and comprehensive ROI extraction across different datasets.

4. DISCUSSION & CONCLUSION

Our results demonstrate that the proposed landmark-based
ROI prediction method is both robust and generalizable
across different datasets. By dynamically estimating miss-
ing bifurcations using average training offsets or anatomical
symmetry, the approach ensures full coverage of the Circle of
Willis even in cases with incomplete detections. Quantitative
evaluation showed high clDice scores and low BettiO errors,
confirming accurate localization and preservation of vascu-
lar connectivity. Qualitative assessment further illustrated
that the method reliably captures all major bifurcations and
produces precise ROIs.

Furthermore, when compared to the nn-Detection ROI
localization approach, our method consistently produces pre-
dicted centers of mass that are closer to the ground truth.
While nn-Detection shows large variability in some cases, our
approach maintains stable and accurate localization across all
samples. This comparison highlights the improved precision
and robustness of our landmark-based method, making it
particularly suitable for automated cerebrovascular analysis
where accurate ROI definition is critical.
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