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A B S T R A C T

Most of the intracranial aneurysms (ICA) occur on a specific portion of the
cerebral vascular tree named the Circle of Willis (CoW). More particularly, they
mainly arise onto fifteen of the major arterial bifurcations constituting this circu-
lar structure. Hence, for an efficient and timely diagnosis it is critical to develop
some methods being able to accurately recognize each Bifurcation of Interest
(BoI). Indeed, an automatic extraction of the bifurcations presenting the higher
risk of developing an ICA would offer the neuroradiologists a quick glance at the
most alarming areas. Due to the recent efforts on Artificial Intelligence, Deep
Learning turned out to be the best performing technology for many pattern
recognition tasks. Moreover, various methods have been particularly designed
for medical image analysis purposes. This study intends to assist the neuro-
radiologists to promptly locate any bifurcation presenting a high risk of ICA
occurrence. It can be seen as a Computer Aided Diagnosis scheme, where the
Artificial Intelligence facilitates the access to the regions of interest within the
MRI. In this work, we propose a method for a fully automatic detection and
recognition of the bifurcations of interest forming the Circle of Willis. Several
neural networks architectures have been tested, and we thoroughly evaluate the
bifurcation recognition rate.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

A cerebral aneurysm is a bulge or dilation of an artery
in the brain resulting from a weakness in the blood vessel
wall (Brisman et al., 2006; Chalouhi et al., 2013). Un-
treated brain aneurysms may present a risk of rupture,
leading to an hemorrhagic stroke potentially causing the
patient’s death for up to 50 % of all cases (Frösen et al.,
2012; Suarez et al., 2006; van Gijn and Rinkel, 2001). MRI
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or CT scans are generally used to detect the presence of
intracranial aneurysms (Jerman et al., 2015; Kakeda et al.,
2008; Duan et al., 2019; Dai et al., 2020; Sichtermann
et al., 2019; Shahzad et al., 2020; Stafa and Leonardi,
2008; Timmins et al., 2021; Ueda et al., 2019; Yang et al.,
2021). Such lesions occur most frequently along the Circle
of Willis (CoW), onto a particular set of arterial bifur-
cations (Brown and Broderick, 2014; Keedy, 2006). The
Circle of Willis consists of a set of arteries in the base of the
brain that connects the left and the right anterior cerebral
trees to the posterior cerebral tree (Leclerc et al., 2003).
There are many different CoW configurations, with some
variations in the number, shape and size of arteries (Şahin
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and Pekçevik, 2018; Hartkamp and Van der Grond, 2000;
Jones et al., 2021). As a consequence, these variations af-
fect the blood flow within the brain and may be associated
with several cerebrovascular pathologies (Pascalau et al.,
2019). Understanding the geometric variations of the ar-
teries and bifurcations is important to determine risk fac-
tors for numerous vascular problems including aneurysm
occurrence (Bogunović et al., 2013; Kayembe et al., 1984;
Lazzaro et al., 2012). Due to the increasing workload and
the demanding nature of the detection process by radi-
ologists, an automatic detection and recognition of the
bifurcations of the CoW can be a great help to estab-
lish a diagnosis, to detect and to monitor aneurysms at
an early stage. An automatic recognition of the bifurca-
tions of interest could be used jointly with vascular tree
characterization methods, in order to anticipate an ICA
formation, due to an abnormal bifurcation configuration.
Indeed, in recent works (Nouri et al., 2020), we have pro-
posed some tools for a full geometric characterization of
the CoW bifurcations. However, this study was conducted
on the MRA-TOF images acquired from 25 patients pre-
senting an aneurysm either on the left or the right Middle
Cerebral Artery (MCA). In this previous investigation, we
did limit our dataset to 25 images only, as the bifurcations
were manually selected, and a full evaluation of the col-
lected features was quite a tedious process. Moreover, we
only focused onto MCA aneurysms to reduce a little the
annotation burden. Obviously, an automatic bifurcation
recognition process would have been extremely useful to
expand the study to a much larger dataset. Thanks to
the method proposed in this paper, such an analysis could
be conducted again with a much larger dataset and onto
any other bifurcation of Interest of the Circle of Willis,
hence guiding the neuroradiologists toward a better un-
derstanding on the risk of ICA formation (or even the risk
of evolution).

Indeed, we have recently showed that a full bifur-
cation characterization may also prove very useful to
monitor the bifurcation evolution during the aneurysm
growth (Boucherit et al., 2022).

In order to diagnose various brain vessel deformities
or cerebrovascular pathologies, brain vascular segmenta-
tion approaches have been widely studied in the literature
(Moccia et al., 2018; Klepaczko et al., 2016; Cetin and
Unal, 2015; Rempfler et al., 2015; Xu et al., 2010). How-
ever, fewer works have proposed cerebral bifurcation de-
tection and labeling (Bogunović et al., 2011, 2013; Robben
et al., 2013, 2016; Gurobi et al., 2015; Bilgel et al., 2013;
Dun̊as et al., 2017). The bifurcations correspond to the
endpoints of arteries and more precisely the intersection
between merging or splitting branches. Thus, classifying
the CoW bifurcations allows to identify the connecting ar-
teries. Using Maximium a Posteriori probability estima-
tion, Bogunovic et al. (Bogunović et al., 2013) automati-
cally labeled 11 of the main bifurcations of the CoW based
on their attributes, their topology and their probability of
occurrence and they obtained high accuracy results (95%)

however this score drops down to 58% when the entire
CoW is under consideration. In (Dun̊as et al., 2017),
Dunas et al. created an automated pipeline based on a
probabilistic atlas, describing the location and the shape
of the main brain arteries. Robben et al. (Robben et al.,
2016) proposed a method that simultaneously segments
and labels the cerebral vasculature by a probabilistic for-
mulation. The latter produces an integer optimization pro-
gram solved using the branch-and-cut algorithm (Gurobi
et al., 2015). In (Bilgel et al., 2013), the authors ap-
plied a Random Forest classifier to the features computed
on the vessel centerlines of the cerebral arteries, thus ob-
taining a class probabilities for each blood vessel segment.
These likelihoods are then used as input of a Bayesian Be-
lief network for a better classification accuracy. Wang et
al. (Wang et al., 2017) used a supervised machine learning
algorithm and more specifically XGBoost classifier for the
anatomical labeling of 11 bifurcations belonging to the Cir-
cle of Willis. To classify the bifurcations, they used several
geometrical features defined on a vessel centerline model.
The probabilities obtained by the classifier are then used as
inputs to a Hidden Markov Model (HMM) to impose some
topology constraints for a more accurate labeling. Finally
in (Essadik et al., 2022), the authors also considered Ma-
chine Learning methods to identify the main bifurcations
of the cerebral arteries by using various geometric features
(Nouri et al., Patent WO/2020/115162, 2018) of the cere-
bral arteries as input of supervised ML algorithms. They
obtained a rather efficient labeling of the main cerebral
artery bifurcations. However, all these methods need a
first pre-processing step isolating CoW arteries before re-
sorting to the clustering step, which limits the use of such
approaches in a real world scenario. The initial bifurcation
labeling is commonly performed by highly trained, expe-
rienced readers. Recently, Convolutional Neural Networks
(CNNs) have become the standard approach in medical
image analysis achieving state-of-the-art results in various
tasks, such as classification, object detection and segmen-
tation (Yu et al., 2021; Pouyanfar et al., 2018; Liu et al.,
2017). In this context, CNNs have shown promising re-
sults on brain vessel segmentation (Guo et al., 2021; Meng
et al., 2020; Fan et al., 2020; Zhang et al., 2020; Livne
et al., 2019; Hilbert et al., 2020; Sanchesa et al., 2019; Tet-
teh et al., 2020). In (Dumais et al., 2022), the authors cre-
ated an automated deep learning based method to segment
and label the main arteries composing the CoW. Although
our work uses a similar approach, we don’t tackle exactly
the same issue. In this study, we propose a classification
method for automatic labeling of the main CoW bifurca-
tions responsible for about 85% of the cerebral aneurysms
occurrences. The labeling of these intersecting points be-
tween arteries extends the work on CoW arteries segmen-
tation considered in (Dumais et al., 2022). The work pre-
sented in this paper is a part of a large series of scientific
research projects (National French projects ANR-ICAN,
ANR-WECAN and PHRC-UCAN ) (Bourcier et al., 2017;
L’Allinec et al., 2020; Boucherit et al., 2022), where neu-
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Fig. 1: General flowchart of the bifurcation recognition process.

roradiologists aim to identify and understand the multiple
factors that lead to the development of saccular aneurysms
along the Circle of Willis. Notably, they intend to fully
characterize the geometrical features of the bifurcations,
so as to estimate the risk of ICA occurrence depending
on a given bifurcation configuration. These interdisci-
plinary projects intend to study the ICA formation from
both the genetic predisposition and image analysis per-
spective. Thus, a significant part of the project is ded-
icated to medical image analysis. Part of our investiga-
tions is devoted to the automatic detection and the char-
acterization of the CoW bifurcations (Nouri et al., 2020;
Essadik et al., 2022), synthetic generation of brain vascula-
ture (Autrusseau et al., 2022; Chater et al., 2021), and the
automatic detection and characterization of aneurysms in
Magnetic Resonance Angiography (MRA) - Time of Flight
(TOF) acquisitions (ongoing works). In this study, we pro-
pose an automated detection and labeling of the major
CoW bifurcations using deep learning-based methods.

The rest of the paper is organized as follows. Section
2 describes the pipeline of the proposed method including
the considered dataset, the neural networks architectures
and the evaluation metrics. In Section 3, we present the
experimental results. We provide a thorough analysis of
the method’s performances, we compare different CNN ar-
chitectures, and try to understand the variability of the
recognition rates per bifurcation. Finally, Section 4 pro-
vides a discussion on the proposed method and concludes
this work.

2. Materials and Methods

In this section, we will thoroughly describe the image
dataset that has been constituted, the annotation process,
the CNN architecture we have been using, as well as a pro-
posed U-Net based segmentation method, needed to come
up with a fully automatic process. For a given test image,
we show in Fig. 1 the global flowchart of the bifurcation
recognition process. We can observe how the two distinct
neural networks are being successively used; the first one
(3D U-Net) provides a vasculature segmentation, whereas

the second (3D CNN) is applied onto 3D patches, centered
around the vascular bifurcations for BoI classification. In
this section, we will describe in details each and every step
of this process.

2.1. Data acquisition

In this work, we have gathered an heterogeneous MRA
dataset (148 patients) from the ICAN database. This
database consists of MRA-TOF images acquired on a large
panel of patients (more than 2 500) of various ages, within
about 60 different medical institutions all over the French
territory. In the current study, among the 2 500 images
constituting the ICAN dataset, 148 images were randomly
chosen. These images were issued from 28 French institu-
tions and hence, acquired on various MR machines with
a wide range of MR acquisition parameters, thus ensuring
the robustness of a deep learning model that could gen-
eralize across different datasets. The MRA-TOF images
were acquired on 12 different MRI scanners (from Siemens
Healthcare, GE Medical systems and Philips Medical sys-
tems) partitioning the data into 12 different sets. The
acquisition parameters are reported in Table 1. Overall,
118 MRA-TOFs were used for training and 30 images were
retained as an independent test dataset. To guarantee that
all MRA-TOFs have coherent dimensions and voxel spac-
ing, the images were re-sampled to a median voxel spacing
of 0.4mm3 (Isensee et al., 2021).

2.2. Data Preparation/Annotation

Our main goal is to detect the bifurcations of interest
along the Circle of Willis in 3D medical volumes using
Convolutional Neural Networks (CNNs) which is among
the most promising solutions in medical image analysis
due to its high capability in extracting powerful high-level
features. In order to fully exploit the spatial contextual in-
formation, we have opted for 3D CNNs, i.e. based on 3D
convolution operations, rather than sequentially employ-
ing a 2D CNN on the MRA slices. Indeed, this commonly
ensures a better detection (Singh et al., 2020). However,
applying 3D CNNs is not straightforward. Processing the
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Table 1: Summary of the Time of flight (TOF) magnetic resonance imaging (MRI) dataset used in the study.

Dataset Constructor MR device MFS (T) Participants
Set-1 GE Medical Systems Optima MR450W 1.5 25
Set-2 GE Medical Systems Discovery MR750W 3.0 9
Set-3 GE Medical Systems Signa HDxt 1.5 1
Set-4 SIEMENS Aera 1.5 32
Set-5 SIEMENS Skyra 3.0 20
Set-6 SIEMENS Avanto 1.5 3
Set-7 SIEMENS Prisma 3.0 3
Set-8 SIEMENS Sonata 1.5 3
Set-9 SIEMENS Verio 3.0 1
Set-10 Philips Medical Systems Ingenia 3.0 19
Set-11 Philips Medical Systems Achieva 3.0 17
Set-12 Philips Medical Systems Achieva 1.5 2

entire brain volume is very challenging, it requires signifi-
cant GPU memory and is computationally expensive and
time-consuming. To tackle these problems, we have re-
designed the 3D bifurcation recognition as a patch-wise
classification task, the network was thus trained on 3D
patches encompassing the bifurcations of interest of the
CoW. It is thus necessary to precisely locate each and ev-
ery BoI within the 148 TOFs. This was possible by a
pre-segmentation step. For this purpose, two distinct an-
notation processes had to be manually performed : i) a
full vascular tree segmentation, and ii) position markers
had to be placed onto each BoI. An initial annotation was
first conducted by a trained operator (author FA), and
a medical expert (author RB : neuroradiologist with 10
years experience) validated and corrected whenever neces-
sary each and every labeled image of the dataset.

2.2.1. Step 1-Centerline extraction

Thanks to the vasculature skeletonization, we can lo-
cate all the bifurcations centers within the 3D space. The
approach described in (Nouri et al., 2020) was used. But
first, for each image, the cerebral arteries must be prop-
erly segmented. The vascular tree segmentation can be ob-
tained using various methods as reviewed in (Moccia et al.,
2018). In order for the bifurcation recognition method to
be fully automatic, an efficient vascular tree segmentation
algorithm must be applied. We will present in section 2.3
the Deep Learning-based segmentation method (U-Net)
we have considered. Thus, for the training phase of the
segmentation network, the annotations were manually per-
formed by a trained operator using the 3D Slicer software1.
Given the 3D cerebral vasculature segmentation, we com-
pute its skeleton using the method described in (Lee et al.,
1994), then, a 3D undirected graph (Nouri et al., Patent
WO/2020/115162, 2018) is generated from the extracted
skeleton. The graph edges represent the centerlines of the
arteries and the nodes represent either the bifurcations or
the loose ends of the arteries.

1https://www.slicer.org
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Fig. 2: Schematic representation of the Circle of Willis; Letters in
yellow discs stand for the bifurcations labels, whereas the percentages
within the gray discs show the frequency of aneurysms occurrence.

2.2.2. Step 2-Patch selection

Using the 3D graph, one can easily locate the center of
any vascular bifurcation in the 3D space. Hence, using
the manually positioned labels, we have located all the
CoW bifurcations and cropped a surrounding patch (32×
32 × 32 voxels) around the center coordinates. Based on
our preliminary tests, these 32 voxels patches adequately
encompassed each bifurcation of interest while preventing
to crop two consecutive bifurcations of interest within the
same patch.

In this study, we have selected 13 BoIs representing
the highest risk of aneurysm occurrence (Robben et al.,
2016) described as follows (bifurcations labeled A to M
in Fig. 2). The intersection points between the first and
the second segments of the anterior cerebral artery ACA-
A1 and ACA-A2, for the left and right anterior cerebral
tree (A and B), the bifurcations between ACA-A1 and
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Table 2: Number of patches for each bifurcation category in the data
set.

Bifurcation label Data set (118 TOFs)
#BoNI 212

#A 81
#B 73
#C 93
#D 92
#E 100
#F 95
#G 59
#H 55
#I 70
#J 81
#K 94
#L 23
#M 25

the middle cerebral arteries MCA (C and D), the division
points of the MCA into the segments M1 and M2 (E and
F). Other sites include the internal carotid artery (G and
H) and ophthalmic arteries OA (I and J). In the poste-
rior cerebral tree, the common locations where aneurysm
development is high include the intersection of the basilar
artery BA and the posterior communicating arteries (K)
and finally the 2 sites spanning from the vertebral arter-
ies to the posterior inferior cerebral arteries (M and L).
Overall, this makes 13 bifurcations of interest for the clas-
sification task.

A 14th class is devoted to all the remaining bifurcations
(Bifurcations of Non-Interest). These bifurcations will be
referred to as BoNI from now on. The purpose of this 14th

category is to discern the CoW bifurcations from all others,
being outside the CoW. This allows an automatic detection
to be applied on the entire MRA-TOF of a patient. It is
worth noting that the constituted dataset is unfortunately
not composed of a balanced amount of each bifurcation
of interest. This is due to the large variability of CoW
configurations among patients, explained by missing, du-
plicated or hypoplastic arteries (Şahin and Pekçevik, 2018;
Hartkamp and Van der Grond, 2000; Jones et al., 2021).
The variability could also be caused by the MR acquisi-
tions where in certain cases, the posterior cerebral tree is
not complete. More details on the distribution of classes
in our dataset can be found in Table 2.

2.3. Deep Learning-based segmentation of brain vessels

For a fully automated recognition of the BoIs, some
candidate patches must be first extracted using the seg-
mented image. The segmentation is performed by a U-
Net architecture (Çiçek et al., 2016; Ronneberger et al.,
2015), which presents an encoder/decoder structure. Each
level in the encoder consists of two successive 3D convo-
lution layers (kernel size: 3 × 3 × 3 , stride: 1), a batch

normalization layer and a Rectified Linear Unit (ReLU)
activation, followed by a max pooling layer (kernel size:
2 × 2 × 2, stride: 1). The depth of the feature maps dou-
bles with each downsampling (going from 32 to 256). For
the decoder path, max pooling layers were replaced by up-
sampling layers. Furthermore, training is performed using
Adam optimizer with a learning rate of 0.0001, a batch
size of 8 and the Dice loss as a cost function. We use a
threshold of 0.5 to binarize the U-Net outputs. The seg-
mentation task is applied on 3D patches of size 64×64×64
extracted from each MRA-TOF. In total, 100 patches were
extracted per TOF, among those, 70 patches were centered
onto a blood vessel, whereas the remaining 30 were not.
From 118 MRA-TOFs, 88 were used for training and 30
for validation. The U-Net performance was measured us-
ing the whole-brain segmentation constructed from aggre-
gating patch-wise predictions and was conducted on the
test dataset using four different metrics : Precision and
Recall to assess the quality and the completeness of the
segmentation, Dice similarity Coefficient (DSC) to quan-
tify the overlap between the ground truth and the pre-
diction, and 95 percentile Hausdorff Distance (95HD) to
capture the boundary errors. The primary goal in develop-
ing a reliable bifurcation recognition method is not solely
focused on reaching optimized segmentation performances.
Instead, the emphasis lies on effectively extracting accu-
rate bifurcation locations from the segmented image and
the subsequent 3D skeleton representation.

Thus, in order to evaluate the fidelity of the 3D graph
issued from the skeletonized segmentation along the Cir-
cle of Willis, we have performed a structural assessment
of the extracted bifurcations. That is to say, we evaluate
the presence/absence of the various arteries constituting
the CoW. This was achieved by overlaying the predicted
output masks onto the original scans, and having the two
mentioned trained annotators visually assess which arter-
ies were correctly identified for each patient based on a
predefined scheme of Circle of Willis arteries. Each sin-
gle artery was considered as being properly identified if at
least a portion of the segmented branch emerges from the
bifurcation at the graph node and overlaps with the artery
as observed on the raw MRA scan.

2.4. Classification networks architectures

With regard to medical image classification, a few re-
search groups designed their own networks from scratch
while most used established architectures (VGG, ResNet,
DenseNet) that achieve state-of-the-art performances
(Rawat and Wang, 2017) on very large public datasets of
2D images (Imagenet, Coco, etc.). However, when it comes
to medical image classification with little data, CNN with
few layers could achieve, with a shorter training time, com-
parable or even better performances than deeper and more
complex architectures. To the best of our knowledge, no
research project has ever been conducted on the classifica-
tion of the CoW bifurcations using Deep Learning. How-
ever, we do not intend to run a full performance benchmark
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Fig. 3: Architecture of our 3D CNN.

of the state of the art methods applied for our particular
task. We have conducted a study considering three widely
used image classification models, VGGNet (Simonyan and
Zisserman, 2014), ResNet (He et al., 2016), and DenseNet
(Huang et al., 2017).

In order to preserve the information along the depth
dimension, we used 3D CNN networks obtained through
3D convolution layers. As previously described, we con-
sidered small 32 × 32 × 32 patches as the network’s in-
put. All patches were z-score normalized. Considering this
patch size, and a CNN with a final softmax layer, giving
the probabilities for each of the 14 classes, we have con-
sidered different architectures. We have first re-designed
the three mentioned CNN networks (VGG-16, ResNet-18
and DenseNet-121) by replacing the 2D layers by their
respective 3D layers while keeping the same number of
layers. It is worth mentionning that for each model, we
chose the version with the smallest number of layers (16 for
VGG, 18 for ResNet and 121 for DenseNet). Moreover, we
have conceived a 3D CNN inspired by the VGG-16 model
by keeping 9 convolutional layers (kernel size: 3 × 3 × 3,
stride: 1) grouped in 5 convolutional blocks with 32, 64,
128, 256 and 512 feature channels respectively. In order to
reduce the input dimensionality, max pooling layers (ker-
nel size: 2 × 2 × 2, stride: 2) were considered throughout
the network. Every convolutional layer is followed by a
3D batch-normalization layer (BN) and a rectified linear
unit (ReLU) activation layer. The last 2 layers are fully
connected. The architecture of our 3D CNN is depicted
in Fig. 3. Due to the small number of training samples,
we kept the network relatively small, thus avoiding overfit-
ting. Finally, a dropout layer with a 60% rate is used for
regularization before the final layer of all the considered
networks.

2.5. Training

All previously described CNNs were implemented us-
ing Tensorflow. Random flipping with a probability of
0.5 around the z-axis (number of slices) was performed
to increase the training set. Other transformations have

not shown any improvement in the classification accuracy.
Axial flipping was carefully done changing the bifurcation
label to its corresponding new value (left anterior bifurca-
tion label turned into the right label and vice-versa). Con-
volution layers were initialized using Xavier initialization
(Glorot and Bengio, 2010). Optimization was performed
using the categorical cross-entropy loss, Adam optimizer
(Kingma and Ba, 2014) with β1 = 0 and β2 = 0.9, and a
learning rate of 0.0001. All models were trained for 250
epochs with a batch size of 32.

2.6. Evaluation and model selection

A five-fold cross-validation with respect to the patients
was used for the evaluation of each model. For this pur-
pose, the training set (118 MRA-TOFs) was split into 5
distinct subsets making sure that each one has a similar
distribution of the different classes (bifurcations of inter-
est). As a result, five models will thus be trained, each
with 4 of the folds being used as the training data and the
remaining fold as validation data. Figure 4 illustrates the
data splitting and cross-validation procedure.

Training Validation Test

Fold1 Fold2 Fold3 Fold4 Fold5

5- Fold cross validation Test dataset

Fig. 4: Data splitting and cross-validation framework. Each fold
comprises around 24 images and the separate test dataset is com-
posed of 30 images.
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To compare the different models, we have computed the
area under the ROC Curve (AUC). The ROC curve is
plotted with the True Positive Rate (TPR) against the
False Positive Rate (FPR) at different thresholds, where
TPR and FPR are defined as:

TPR =
TP

TP + FN
,

and,

FPR =
FP

FP + TN
.

The AUC measures the entire two-dimensional area un-
derneath the ROC curve. In parallel, we also compute the
accuracy score and F1-score defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
,

and,

F1-score =
2TP

2TP + FP + FN
.

For all the validation samples and for each of the folds,
the above metrics were computed, thus providing an eval-
uation of the whole dataset. The holdout testing set was
based on these five-fold models. The so-obtained predic-
tions were then averaged from the five models to calculate
the final metrics on the testing set.

2.7. Patient-wise evaluation

The cerebral vasculature is composed of the CoW arter-
ies but also of other brain distal vessels. As the 3D undi-
rected graph is carried out on the whole segmented vas-
cular tree, hundreds of bifurcation patches are extracted
per image. The vast majority correspond to the BoNI (i.e.
outside the Circle of Willis), while the remaining patches
are those surrounding the BoIs. These latter are centered
around the 3D graph vertices. Let us recall that for train-
ing, we have applied a selection of patches based on the
location of a particular BoI in the MRA-TOF and its ap-
proximate distance to a node of the 3D graph. Hence, a
given BoI center may not correspond to a unique node of
the 3D graph but will likely be located in its vicinity. This
could partially be explained by some imperfections due to
either the skeletonization or the segmentation process, but
also, by a significant well known variability of the cerebral
vasculature anatomy.

Additionally, it is worth noting that for some pecu-
liar anatomical configurations, some bifurcations may split
into more than 2 daughters giving a trifurcation, a quadri-
furcation or even more daughter branches (although un-
common), thus making the recognition step more chal-
lenging. Fig. 5 depicts a portion of a 3D segmented MRA-
TOF volume where 2 successive graph node neighbors are
respectively the centers of two overlapping patches, both
containing the same bifurcation K. The patient-wise eval-
uation is performed using the automatic prior selection of

Fig. 5: 3D crop of a segmented MRA-TOF image of dimension (445,
475, 252). Patches P1 and P2 with respective centers coordinates
(226, 217, 147) and (224, 218, 151) overlap and encompass the same
BoI.

patches. First, the raw image is resampled to 0.4mm3,
then an automated segmentation of the cerebral arteries is
applied on the image using a 3D U-Net pretrained on our
training dataset. Next, the 3D skeleton is computed on the
obtained segmentation which allows the extraction of nu-
merous patches centered at 3D graph nodes. The patches
will then go through the classification network to estimate
their label (refer to Fig. 1 to see the detailed flow chart).
For each category of interest, we consider the most prob-
able bifurcation (presenting the highest confidence score)
based on the natural assumption that each category of BoI
can only occur once for a particular patient. For a quan-
titative evaluation, we compute the distance between the
predicted center of the bifurcation and the actual center
of the ground truth BoIs annotated by the medical expert.
For each inspected bifurcation, a recognition score of one
is assigned if this distance falls below a given threshold.
Otherwise, a value of zero is assigned. Any missing bi-
furcation, as specified by the ground truth labels, is not
considered by the evaluation protocol. Overall, for each
BoI, a recognition rate (recognized / existing bifurcations)
can thus be computed on the test dataset.

3. Experimental Results

Now that we have thoroughly described our image
dataset, the neural networks and the evaluation protocol,
let us present our experimental results. We will first eval-
uate the global efficiency on a full TOF acquisition, and
then try to delve a bit deeper into the performances per
bifurcation of interest.

3.1. Segmentation results

Let us first analyze the performances of the 3D U-Net
onto the test set. The 3D U-Net model achieved a Dice
Similarity Coefficient of 0.84, a precision of 0.88 and a
recall of 0.84 when segmenting the whole cerebral vascular
tree. The 95HD value was 37 voxels. Such a result is close
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enough to the performances one can find in the literature
with some reported models achieving a DSC up to 0.9 on
MRA scans (Wang et al., 2017; Livne et al., 2019; Chen
et al., 2017; Hilbert et al., 2020).

The qualitative analysis concerning the identification of
the arteries constituting the Circle of Willis on the pre-
dicted U-Net segmentation masks is depicted in Fig. 6. We
report the percentage of arteries being properly identified
(as described in Section 2.3) for each artery composing the
CoW. Overall, the larger arteries (BAs, and ICAs) were al-
ways correctly identified (100%), whereas the smaller ar-
teries (AComs, PComs, OAs and PCA-P1 s) were respec-
tively identified with an accuracy of 93%, 96.7%, 95%, and
96.7%. Among the tested medium-sized arteries (MCAs,
PICAs, VAs and ACAs), 97.2% were correctly identified.
In the rare cases of missed identifications, the annotators
reported the presence of a gap in the segmented branch
around the corresponding bifurcation.
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Fig. 6: Percentage of identified arteries on the test dataset.

3.2. CNN architecture benchmark

To improve the classification performances, the 3D CNN
design is of paramount importance, we have thus tested
4 different architectures and analyzed their performances
in terms of BoIs classification. Very high cross-validation
values are reached with all four architectures for labeling
the bifurcations of interest, as shown in Table 3.

Table 3: Performance measures reported on the cross-validation on
various architectures.

Model Augs ACC AUC F1-score
VGG-16 no augs 86.45 97.13 84.76
VGG-16 flip 89.80 97.53 87.77

ResNet-18 no augs 89.87 98.09 88.72
ResNet-18 flip 91.08 98.89 89.71

DenseNet-121 no augs 91.68 99.25 90.31
DenseNet-121 flip 92.53 99.30 91.68

Proposed no augs 92.71 99.14 91.80
Proposed flip 93.50 99.40 92.13

However, our proposed Convolutional Neural Network
(7M parameters) presents the best overall classification

performances, as measured by all the metrics (93.5% ACC,
99.4% AUC and 92.13% F1-score), followed by DenseNet-
121 (11M parameters), ResNet-18 (33M parameters) and
VGG-16 (44M parameters). Our proposed architecture
is thus preferred in the following, as it exhibits the best
performances. Table 3 also shows that using axial flip as
a way to augment the dataset may substantially improve
the results.

3.3. Cross-validation classification results

For the classification experiments, our best model net-
work discriminated between 13 classes with an overall ac-
curacy of 0.935 and an F1-score of 0.921. We report Preci-
sion, Sensitivity and F1-score for each the 13 bifurcations
of interest in Fig 7.

Overall, the model performs well for most classes, but
with a slight performance decrease for bifurcations L and
M. The best efficiency can be observed for classes C, D, I, J
and K with an F1-score of 0.947, 0.973, 0.970, 0.994, 0.943
respectively. The sensitivity drops for L and M (0.792 and
0.750 respectively).
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Fig. 7: Classification performance of the 13 BoIs obtained from cross-
validation.

Some L and M bifurcations are mistakenly classified as
background bifurcations (BoNI, outside the CoW). This
does not come as a surprise, as these bifurcations are miss-
ing in 80% of our dataset due to an improper image ac-
quisition. F1-score drops to 89% for BoIs G and H. We
observe that mislabeling mostly occurred in patches where
the PCom artery is either hypoplastic or even missing
(aplasia). Other forms of miss-classifications occurred for
the B bifurcation, which was occasionally detected as be-
ing A. More insights concerning the model’s performances
on various CoW configurations will be given in Section 4.

3.4. Quantitative results on the test set

The test set composed of 30 MRA-TOFs, is independent
from the training set. Its purpose is to evaluate the auto-
mated bifurcation recognition within a TOF acquisition.
In fact, for a given TOF, all bifurcations issued by its 3D
graph constitute the test set and will be labeled accord-
ingly by the CNN. Each bifurcation either falls into one
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Fig. 8: Distance distribution between the predicted bifurcations and the Ground Truth annotations on the test set.

of the 13 BoI classes, or will be assigned to the 14th class
(BoNI).

For quantitative results, we have conducted a compari-
son between the labels issued from the expert segmentation
and the automatic U-Net segmentation.

Fig. 8 displays, for each category, the distribution of
the 3D Euclidean distance between the predicted bifurca-
tion center and the ground truth bifurcation center, using
either the expert segmentation (a) or the U-Net segmenta-
tion (b). Considering the expert segmentation, across all
subjects and all classes, 94% of the predicted coordinates
are located within a 16 voxels radius from the annotation
coordinates. Given that our 3D square patches are 32 vox-
els wide, setting a distance threshold at Th = 16 voxels
seems reasonable to consider that any predicted patch ex-
hibiting a smaller distance will inevitably encompass the
bifurcation of interest.

Examining the inter-quartile ranges shows a lower dis-
tance dispersion for bifurcations A, B, C, D, G, H and K.
This can be attributed to their highly distinguishable ge-
ometry. Indeed, the shape of these bifurcations is quite
unique, and hence, no other cerebral bifurcations do share
a similar layout. However, we can observe in Fig. 8(a) that
the distance distributions of bifurcations E and F are more
spread out than any other bifurcation.

While Fig. 8(a) shows the distances from the predicted
bifurcations to the ground truth labels on the manually
segmented images, the labeling performances based on the
U-Net segmentation are shown in Fig. 8(b). We can ob-
serve some rather strong similarities between both plots.
Indeed, 91% of the predicted patches are no further away
than the defined distance threshold. More dispersed data
was expected as the ground truth bifurcations annotations
were based on the expert segmentation. However, ulti-

mately, this had little effect on the overall recognition rate
and BoI centers were localized closely to the coordinate
annotations. Furthermore, some outliers can also be ob-
served for bifurcations G and H when using the U-Net
segmentation.
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Fig. 9: Recognition rates with respect to different distance thresh-
olds.

We show in Fig. 9 the evolution of the recognition rates
for various distance thresholds. The overall recognition
rate ranges from 73% using a distance threshold of zero
up to 97% for a distance threshold set to the patch width
(Th = 32). The most significant performances decrease
arises for bifurcations E and F. By adjusting the distance
threshold, we observe a consistently higher recognition rate
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for bifurcations C, D, and K, while the recognition rate for
L and M remains low.
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Fig. 10: Labeling performance by BoI class with respect to Expert
and U-Net segmentation (with a distance threshold set to 16).

Fig. 10 presents, for each BoI, the classification rate
(with a Th = 16 voxels) when the segmentation was ei-
ther performed manually, or via the U-Net model. We
can observe that, overall, the segmentation method has a
very limited impact on the bifurcation recognition. In fact,
the few encountered missed detection concern bifurcations
with small and/or thin branches : extremely small ACom
artery for A and B labeling, thin ophthalmic artery for I
and J labeling, small PICA artery for L and M labeling or
hypoplastic/missing PCom artery for G and H labeling.

4. Discussion and Conclusion

In this work, we have proposed a method to provide an
automatic anatomical labeling of the bifurcations consti-
tuting the Circle of Willis on human MRA-TOF acquisi-
tions using Convolutional Neural Networks. Our approach
combines an efficient segmentation of the cerebral arteries
and a patch-wise classification of BoIs using a 3D CNN.
From a training set of pre-annotated patches, the model
was able to classify the thirteen bifurcations of interest
with an accuracy score of 93.5%. Indeed, for an automatic
BoI detection and labeling (recognize a given BoI within an
entire MRA-TOF image), we have tested our method on
an independent test set composed of 30 MRA-TOFs. On
this dataset, 91% of the bifurcations were correctly iden-
tified within a 16 voxels distance radius using the U-Net
pre-segmentation step. These results are highly encourag-
ing, as they prove that the model is capable of isolating
and labeling the main bifurcations of the Circle of Willis
without any user intervention and can be applied to new
images never seen before by the model.

Overall, the BoI were detected and labeled with a high
rate (> 90%) for 9 of the 13 categories, and even up to
100% for bifurcations C, D and K. The labeling rate for
L (60%) and M (80%) is significantly reduced, compared
to the overall recognition rate. Such a reduced efficiency
was expected, and can be explained by a more limited

representation of these bifurcations in our image dataset
(20% of MRA-TOFs). Indeed, as Fig. 11(a) shows, such
bifurcations are a bit remote from the rest of the CoW,
and quite frequently the MRI technician starts the acqui-
sition above L and M. Labeling errors also occurred for
the bifurcations E and F, due to the geometry variability
of the MCA branch. It is widely accepted in the litera-
ture, that the bifurcations E and F along the MCA ex-
hibit a rather complex geometry (Tanriover et al., 2003)
and, most importantly, there exists a significant patient
variability leading the neuroradiologists community to dis-
agree on the exact location of the MCA-M1 / MCA-M2
splitting (Rhoton Jr, 2002; Zaidat et al., 2013; Findakly
et al., 2020), and hence on the precise location of bifurca-
tions E and F. A visual representation of the segmentation
map corresponding to an incorrect E labeling is shown in
Fig. 11(b). The location of the predicted E bifurcation fell
21 voxels away from its corresponding ground truth.

These results are very promising as the tests were per-
formed on a large panel of MRA acquisitions and device
types. The comparison with other related works (Robben
et al., 2016; Bogunović et al., 2013) is difficult, as these
latter are not fully automatic and require a prior man-
ual selection of BoIs by experts, which is time consuming.
Dumais et al. (Dumais et al., 2022), have recently de-
veloped the only automated method devoted to the CoW
arteries segmentation. However, the authors only consid-
ered a limited portion of the CoW. For instance, only the
first segment of the MCA was accounted for, and more-
over, bifurcations E, F, I, J, L, M, presenting a high risk
of aneurysm occurrence (27%, 26% and 8%) were de facto
discarded from the automatically cropped area.

Although this work is not focused on the segmentation
performances, we have shown that our U-Net model may
yield a slightly lower Dice coefficient compared to some
other vasculature segmentation from the literature. How-
ever, all competing projects have been conducted on an
image dataset acquired using either one or two distinct
scanners. In contrast, our study involved 12 different MRI
scanners, which may account for the slightly lower Dice
score observed in our dataset.

Regarding the segmentation pre-processing step, it is
worth noting that, while achieving a high Dice coefficient
is desirable, it is not the most critical factor. Of paramount
concern, is the accurate representation of the CoW bifurca-
tions within the 3D graph. Specifically, all arteries forming
the bifurcations of interest along the Circle of Willis should
be faithfully segmented, in order to ensure that the vicin-
ity of each researched bifurcation will be correctly located
within the 3D graph. In other words, the segmentation
step serves as a pre-selection process, locating all bifurca-
tions that will be subsequently classified by the 3D CNN.
Hence, ultimately, the segmentation accuracy is not cru-
cial, but it is imperative that the segmented images (or
more precisely their 3D skeletons) encompass all arteries
composing the CoW bifurcations. A missing segmented
artery would inevitably lead to missed bifurcations that
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(a) Example of an MRA-TOF with a complete Circle of Willis (all BoI
being correctly labeled).

(b) Incorrectly labeled Bifurcation E, detected 21 voxels away from the
ground truth.

(c) Right PCom missing in the segmentation (partially hypoplastic), leading to an undetected H bifurcation.

Fig. 11: Qualitative analysis of predictions. For visualization purposes, some arteries outside the CoW were cut from the segmentation maps.

will not be explored by the 3D CNN during the bifur-
cation classification process. Our study compares expert
segmentation with U-Net segmentation and shows that the
recognition rate is marginally affected by the segmentation
performance.

Compared to the expert segmentation, the recognition
rate using the U-Net pre-segmentation suffers a 3% de-
crease (from 94 to 91%). Bifurcations that involve larger
and medium-sized arteries are correctly identified. Miss-
detected bifurcations were mostly due to non-segmented
AComs or OA arteries (extremely thin), and unsegmented
PComs arteries. In most cases, the missed detections con-
cern partially hypoplastic branches that could be confused
with noise (Fig. 11(c)). Moreover, we could explain a
missing artery by the anatomical variability of the CoW
rather than the segmentation process. Indeed, compared
to ground truth segmentation, only 3.3% of the PComs,
6.7% of the AComs and 5% of the OAs were not segmented
by the U-Net. This suggests that the current work can nev-
ertheless provide an excellent bifurcation automatic recog-
nition. Lastly, possible improvements of our model mostly

include a better representativity of the labeled L and M
patches in the dataset. It is worth noting that, in the
literature, no other works consider these two bifurcations
as part of the CoW; Nevertheless, in this study, we have
decided to consider these two bifurcations as the risk of
developing an aneurysm there is somewhat significant. To
improve performance and tackle the class imbalance prob-
lem, we need to explore alternative techniques such data
augmentation, which involves increasing the diversity and
size of the training dataset. However, traditional data aug-
mentation methods may not be directly applicable to our
medical image analysis task. Interestingly, the only aug-
mentation technique that had a positive impact on accu-
racy in our study was horizontal flipping. It is clear that
developing specialized augmentation techniques tailored to
our task is necessary to effectively address the class imbal-
ance problem. We might also conceive a sub-division of
bifurcations E and F into two distinct classes, given the
relative uncertainty encountered by the neuroradiologists
on the MCA branch geometry.
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